
Are Multi-language Design Smells Fault-prone? An
Empirical Study

MOUNA ABIDI, DGIGL, Polytechnique Montreal, Canada
MD SAIDUR RAHMAN, DGIGL, Polytechnique Montreal, Canada
MOSES OPENJA, DGIGL, Polytechnique Montreal, Canada
FOUTSE KHOMH, DGIGL, Polytechnique Montreal, Canada

Nowadays, modern applications are developed using components written in different programming languages
and technologies. The cost benefits of reuse and the advantages of each programming language are two main
incentives behind the proliferation of such systems. However, as the number of languages increases, so does
the challenges related to the development and maintenance of these systems. In such situations, developers
may introduce design smells (i.e., anti-patterns and code smells) which are symptoms of poor design and
implementation choices. Design smells are defined as poor design and coding choices that can negatively
impact the quality of a software program despite satisfying functional requirements. Studies on mono-language
systems suggest that the presence of design smells may indicate a higher risk of future bugs and affects code
comprehension, thus making systems harder to maintain. However, the impact of multi-language design
smells on software quality such as fault-proneness is yet to be investigated.

In this paper, we present an approach to detect multi-language design smells in the context of JNI systems.
We then investigate the prevalence of those design smells and their impacts on fault-proneness. Specifically, we
detect 15 design smells in 98 releases of nine open source JNI projects. Our results show that the design smells
are prevalent in the selected projects and persist throughout the releases of the systems. We observe that in the
analyzed systems, 33.95% of the files involving communications between Java and C/C++ contain occurrences
of multi-language design smells. Some kinds of smells are more prevalent than others, e.g., Unused Parameters,
Too Much Scattering, Unused Method Declaration. Our results suggest that files with multi-language design
smells can often be more associated with bugs than files without these smells, and that specific smells are more
correlated to fault-proneness than others. From analyzing fault-inducing commit messages, we also extracted
activities that are more likely to introduce bugs in smelly files. We believe that our findings are important for
practitioners as it can help them prioritize design smells during the maintenance of multi-language systems.

Additional Key Words and Phrases: Anti-patterns, Code Smells, Multi-language Systems, Mining Software
Repositories, Empirical Studies.

ACM Reference Format:
Mouna Abidi, Md Saidur Rahman, Moses Openja, and Foutse Khomh. 2020. Are Multi-language Design Smells
Fault-prone? An Empirical Study. 1, 1 (October 2020), 58 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Mouna Abidi, DGIGL, Polytechnique Montreal, Montreal, QC, Canada, mouna.abidi@polymtl.ca; Md
Saidur Rahman, DGIGL, Polytechnique Montreal, Montreal, QC, Canada, saidur.rahman@polymtl.ca; Moses Openja, DGIGL,
Polytechnique Montreal, Montreal, QC, Canada, moses.openja@polymtl.ca, moses.openja@polymtl.ca; Foutse Khomh,
DGIGL, Polytechnique Montreal, Montreal, QC, Canada, foutse.khomh@polymtl.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Abidi et al.

1 INTRODUCTION
Modern applications are moving from the use of a single programming language to build a single
application towards the use of more than one programming language [1–3]. Capers Jones reported
in his book published in 1998, that at least one third of the software application at that time were
written using two programming languages. He estimated that 10% of the applications were written
with three or more programming languages [4]. Kontogiannis argued that these percentages are
becoming higher with the technological advances [2]. Developers often leverage the strengths and
take benefits of several programming languages to cope with the pressure of the market.
A common approach to develop multi-language system is to write the source code in multiple

languages to capture additional functionality and efficiency not available in a single language. For
example, a mobile development team might combine Java, C/C++, JavaScript, SQL, and HTML5
to develop a fully-functional application. The core logic of the application might be written in
Java, with some routines written in C/C++, and using some scripting languages or other domain
specific languages to develop the user interface [5]. The cost benefits of reuse and the advantages
of each programming language are increasingly powerful reasons behind the proliferation of
multi-language systems.
However, despite the numerous advantages of multi-language systems, they are not without

some challenges. During 2013, famous web sites, e.g., Business Insider, Huffington Post, and Salon
were inaccessible, redirecting visitors to a Facebook error page. This was due to a bug related to the
integration of components written in different programming languages. The bug was in JavaScript
widgets embedded in Facebook and their interactions with Facebook’s servers.1 Another example
related to multi-language design smells is a bug reported early in 2018, which was due to the misuse
of the guideline specification when using the Java Native Interface (JNI), to combine Java with
C/C++ in libguests.2 There were no checks for Java exceptions after all JNI calls that might throw
them. In JRuby, several problems were also reported mainly related to incompatibilities between
languages and missing checks of return values and crashes related to the C language.3
Software quality has been widely studied in the literature and was often associated with the

presence of design patterns, anti-patterns and code smells in the context of mono-language systems.
Several studies in the literature have investigated the popularity and challenges of multi-language
systems [3, 6–9], but very few of them studied multi-language patterns and practices [7–9]. Kochhar
et al. [3] claims that the use of several programming languages significantly increases bug proneness.
They assert that design patterns and design smells are present in multi-language systems and
suggest that researchers study them thoroughly. Mono-language design smells are conjectured in
the literature to hinder software reliability. While a design smell may not definitively identify an
error, its presence suggests a potential trouble spot, that is, a place where there is an increased risk
of bugs or potential failure in the future.
However, despite the importance and increasing popularity of multi-language systems, to the

best of our knowledge, no approach has been proposed to detect multi-language smells. Also,
there is no existing study that empirically evaluates the impacts of multi-language smells on the
software fault-proneness. Through this paper, we aim to fill this gap in the literature. We present
an approach to detect multi-language design smells. Based on our approach, we detect occurrences
of 15 multi-language design smells in 98 releases of nine open source multi-language projects
(i.e., VLC-android, Conscrypt, Rocksdb, Realm, Java-smt, Pljava, Javacpp, Zstd-jni, and Jpype). We
focus on the analysis of JNI systems because they are commonly used by developers and also

1https://www.wired.com/2013/02/facebook-widget-snafu/
2https://bugzilla.redhat.com/show_bug.cgi?id=1536762
3https://www.jruby.org/2012/05/21/jruby-1-7-0-preview1.html

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://www.wired.com/2013/02/facebook-widget-snafu/
https://bugzilla.redhat.com/show_bug.cgi?id=1536762
https://www.jruby.org/2012/05/21/jruby-1-7-0-preview1.html

Are Multi-language Design Smells Fault-prone? An Empirical Study 3

introduce several challenges [6, 10, 11]. Our analysis is based on a previously published catalog
comprising of anti-patterns and code smells related to multi-language systems [12, 13]. In this paper,
we aim to investigate the evolution of multi-language design smells and the relations between
these smells and software fault-proneness. More specifically, we investigate the prevalence of 15
multi-language design smells in the context of JNI open source projects and evaluate their impact
on fault-proneness.
Our four key contributions are: (1) an approach to automatically detect multi-language design

smells in the context of JNI systems, (2) evaluation of the prevalence of those design smells in
the selected projects, (3) empirical evaluation of the impacts of multi-language design smells on
software fault-proneness, and (4) text-based analysis to identify activities that are more likely to
introduce bugs once performed in files with design smells.
Our results show that in the analyzed systems, 33.95% of the files involving communication

between Java and C/C++ contain occurrences of the studied design smells. Some types of smells are
more prevalent than others, e.g., Unused Parameters, Too Much Scattering, Unused Method Declaration.
We bring evidence to researchers that (1) the studied design smells are prevalent in the selected
projects and persist within the releases, (2) some types of design smells are more prevalent than
others, (3) files with the studied multi-language design smells are more likely to be the subject of
bugs than files without these smells, (4) some specific smells are more correlated to fault-proneness
than others i.e., Unused Parameters, Too Much Scattering, Too Much Clustering, Hard Coding Libraries,
and Memory Management Mismatch, and (5) data conversion, memory management, restructuring
the code, API usage and exception management activities could increase the risk of inducing bugs
once performed in smelly files. We believe that our results could help not only researchers but also
practitioners involved in the development of multi-language software systems. We also provide
evidence to developers and quality assurance teams of the importance and usefulness of avoiding
multi-language design smells.

The remainder of this paper is organized as follows. Section 2 discusses the background
of multi-language systems and the design smells studied in this paper. Section 3 describes our
methodology. Section 4 reports our results, while Section 5 discusses these results for better insights
and implications. Section 6 summarises the threats to the validity of our methodology and results.
Section 7 presents related work. Section 8 concludes the paper and discusses future works. Appendix
A describes the detection rules of the proposed approach. Appendix B presents an overview of the
approach validation.

2 BACKGROUND
To study the impact of multi-language design smells on fault-proneness, we first introduce a brief
background on multi-language (JNI) systems. We then discuss different types of multi-language
design smells and illustrate them with examples.

2.1 Multi-language Systems
Nowadays, multi-language application development is gaining popularity over mono-language
programming, because of their different inherent benefits. Developers often leverage the strengths
of several languages to cope with the challenges of building complex systems. By using languages
that complement one another, the performance, productivity, and agility may be improved [14–16].
Java Native Interface (JNI) is a foreign function interface programming framework for multi-

language systems. JNI enables developers to invoke native functions from Java code and also Java
methods from native functions. JNI presents a simple method to combine Java applications with
either native libraries and/or applications [17, 18]. It allows Java developers to take advantage
of specific features and functionalities provided by native code. We present in Fig. 1 an example

, Vol. 1, No. 1, Article . Publication date: October 2020.

4 Abidi et al.

of a JNI code extracted from [17]. Fig. 1(a) presents a Java class that contains a native method
declaration Print() and loads the corresponding native library while Fig. 1(b) presents the C file
that contains the implementation of the native function Print().

(a) JNI method declaration

class HelloWorld {

static {
System.loadLibrary("HelloWorld");}

private native void print();

public static void main(String[] args)
{ new HelloWorld().print();
}

}

(b) JNI implementation function

#include <jni.h>
#include <stdio.h>
#include "HelloWorld.h"

JNIEXPORT void JNICALL
Java_HelloWorld_print(JNIEnv *env, jobject

obj)
{

printf("Hello World!\n");
return;

}

Fig. 1. JNI HelloWorld Example

2.2 Anti-patterns and Code Smells
Patterns were introduced for the first time by Alexander in the domain of architecture [19]. From
architecture, design patterns were then introduced in software engineering by Gamma et al. [20].
They defined design patterns as common guidelines and “good” solutions based on the developers’
experiences to solve recurrent problems. Design smells (i.e., anti-patterns and code smells), on the
other hand, are symptoms of poor design and implementation choices. They represent violations
of best practices that often indicate the presence of bigger problems [21, 22]. There exist several
definitions in the literature about code smells, anti-patterns, and their distinction [23, 24]. However,
in this paper we consider design smells, in general, to refer to both code smells and anti-patterns.
Several studies in the literature studied the impacts of design smells for mono-language systems and
reported that classes containing design smells are significantly more fault-prone and change-prone
compared to classes without smells [25–28].

2.3 Multi-language Design Smells
Design patterns, anti-patterns, and code smells studied in the literature are mainly presented in
the context of mono-language programming. While they were defined in the context of object
oriented programming and mainly Java programming language, most of them could be applied to
other programming languages. However, those variants consider mono-language programming
and do not consider the interaction between programming languages. In a multi-language context,
design smells are defined as poor design and coding decisions when bridging between different
programming languages. They may slow down the development process of multi-language systems
or increase the risk of bugs or potential failures in the future [12, 13].

Our study is based on the recently published catalog of multi-language design smells [12, 13]. The
catalog was derived from an empirical study that mined the literature, developers’ documentation,
and bug reports. This catalog was validated by the pattern community and also by surveying
professional developers [11–13]. Some of those design smells could also apply to the context of
mono-language systems, however, in this study we focus only on the analysis of JNI systems. In

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 5

this paper, since we are not analyzing anti-patterns and code smells separately but as the same
entity, we will use the term design smells for both anti-patterns and code smells. In the following
paragraphs, we elaborate on each of the design smells; providing an illustrative example. More
details about these smells are available in the reference catalog [12, 13].
(1) Not Handling Exceptions: The exception handling flow may differ from one programming

language to the other. In case of JNI applications, developers should explicitly implement the
exception handling flow after an exception has occurred [10, 29, 30].4 Since JNI exception
does not disrupt the control flow until the native method returns, mishandling JNI exceptions
may lead to vulnerabilities and leave security breaches open to malicious code [10, 29, 30].
Listing 1 presents an example of occurrences of this smell extracted from IBM site4. In this
example, developers are using predefined JNI methods to extract a class field that was passed
as a parameter from Java to C code. However, they are returning the result without any
exception management. If the class or the field C is not existing, this could lead to errors.
A possible solution would be to use the function Throw() or ThrowNew() to handle JNI
exception, and also to add a return statement right after one of these functions to exit the
native method at a point of error.

Listing 1. Design Smell - Not Handling Exceptions Across Languages

/* C++ */
jclass objectClass;
jfieldID fieldID;
jchar result = 0;
objectClass= (*env)->GetObjectClass(env, obj);
fieldID= (*env)->GetFieldID(env, objectClass, "charField", "C");
result= (*env)->GetCharField(env, obj, fieldID);

(2) Assuming Safe Return Value: Similar to the previous design smell, in the context of JNI
systems, not checking return values may lead to errors and security issues [13, 29]. The return
values from JNI methods indicates whether the call succeeded or not. It is the developers’
responsibility to always perform a check before returning a variable from the native code
to the host code to know whether the method ran correctly or not. Listing 2 presents an
example of occurrences of this smell. If the class NIOAccess or one of its methods is not found,
the native code will cause a crash as the return value is not checked properly. A possible
solution would be to implement checks that handle situations in which problems may occur
with the return values.

(3) Not Securing Libraries: A common way to load the native library in JNI is the use of the
method loadLibrary without the use of a secure block. In such situation, the code loads a
foreign library without any security check or restriction. However, after loading the library,
malicious code can call native methods from the library, this may impact the security and
reliability of the system [13, 31]. Listing 3, presents an example of a possible solution by
loading the native library within a secure block to avoid malicious attacks.

(4) Hard Coding Libraries: Let us consider a situation in which we have the same code to run
on different platforms. We need to customize the loading according to the operating system.
However, when those libraries are not loaded considering operating system specific conditions

4https://www.ibm.com/developerworks/library/j-jni/index.html

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://www.ibm.com/developerworks/library/j-jni/index.html

6 Abidi et al.

Listing 2. Design Smell - Assuming Safe Multi-language Return Values

/* C++ */
staticvoid nativeClassInitBuffer(JNIEnv *_env){
jclass nioAccessClassLocal= _env->FindClass("java/nio/NIOAccess");
nioAccessClass=(jclass) _env->NewGlobalRef(nioAccessClassLocal);
bufferClass=(jclass) _env->NewGlobalRef(bufferClassLocal);
positionID= _env->GetFieldID(bufferClass, "position", "I");

Listing 3. Securing Library Loading

/* Java */
static { AccessController.doPrivileged(

new PrivilegedAction<Void>() {
public Void run() {
System.loadLibrary("osxsecurity");
return null; } }); }

and requirements, but for instance with hard coded names and a try-catch mechanism, it is
hard to know which library has really been loaded which could bring confusion especially
during the maintenance tasks. Listing 4 provides an example of native libraries loaded without
any information about how to distinguish between the usage of those libraries.

Listing 4. Design Smells - Hard Coding Libraries

/* Java */
public static synchronized Z3SolverContext create(
try { System.loadLibrary("z3"); System.loadLibrary("z3java");
} catch (UnsatisfiedLinkError e1) {
try { System.loadLibrary("libz3");

System.loadLibrary("libz3java");
} catch (UnsatisfiedLinkError e2) {...}

(5) Not Using Relative Path: This smell occurs when the library is loaded by using an absolute
path to the library instead of the corresponding relative path. Using a relative path, the native
library can be loaded and installed everywhere. However, the use of an absolute library path
can introduce future bugs in case the library is no longer used. This may also impact the
reusability of the code and its maintenance because the library can become inaccessible
due to incorrect path. System.loadLibrary("osxsecurity") is an example of this design
smell.

(6) Too Much Clustering: Too many native methods declared in a single class would decrease
readability and maintainability of the code. This will increase the lines of code within that
class and thus make the code review process harder. Many studies discussed good practices
about the number of methods to have within the same class, some examples are the rule of 30

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 7

ZMQ

+ socket: long
+ flag: int

+ CURVE_SERVERKEY: int

+ publicKey: charBuffer

+ context: long

+ secretKey: charBuffer

+ zmq_curve_keypair(CharBuffer
CharBuffer): boolean
+ zmq_z85_encode(CharBuffer,
byte[]):boolean

+ zmq_getsockopt_int(long,
int):int

+ zmq_z85_decode(byte[],
String)

+ zmq_getsockopt_long(long,
int):long

+ zmq_send(long, ByteBuffer,
int):int

+ zmq_recv(long, ByteBuffer,int)
:int

+ zmq_connect(long,
String):boolean

+ zmq_discnect(long,String)
:boolean
+ zmq_poll(long,int,long):int

+ nativeInit():void

+ version():int

+ zmq_ctx_new():int

Etc...

ZMQCrypto

+ publicKey: charBuffer

+ CURVE_SERVERKEY:
int
+ zmq_curve_keypair(Cha
CharBuffer): boolean
+ zmq_z85_encode(CharB
byte[]):boolean

+ zmq_z85_decode(byte[]
String)

+ secretKey: charBuffer

ZMQ

+ POLLIN: int

+ POLLOUT: int

+ zmq_poll(long,int,long):int

+ zmq_poll(long,int,long):int

+ nativeInit():void

+ version():int

+ zmq_ctx_new():int

Etc...

Refactoring

.cpp

.cpp

.cpp

.cpp

ZMQNetwork

+ socket: long

+ context: long

+ zmq_getsockopt_long(long
int):long

+ zmq_send(long,
ByteBuffer, int):int

+ zmq_recv(long,
ByteBuffer, int):int

+ zmq_connect(long,
String):boolean

+ zmq_discnect(long,String)
:boolean

+ flag: int

+ zmq_getsockopt_int(long,
int):int

Foreign Implementation

Fig. 2. Illustration of Design Smell - Too Much Clusterings

introduced by Martin Lippert [32], or the 7 plus/minus 2 rule stating that a human mind can
hold and comprehend from five to 9 objects. Most of the relevant measures are the coupling,
cohesion, the single principle responsibility, and the separation of concerns. In this context, a
bad practice would be to concentrate multi-language code in few classes, regardless of their
role and responsibilities. This may result in a blob multi-language class with many methods
and low cohesion. We present in Fig. 2 an example that we extracted from ZMQJNI.5 In this
example, native methods related to cryptographic operations are mixed in the same class as
the methods used for network communication. This merging of concerns resulted in a blob
multi-language class that contains 29 native declaration methods and 78 attributes. In the
current study we are considering the case of having an excessive number of calls to native
methods within the same class.

(7) TooMuch Scattering: Similar to toomuch clustering, when usingmulti-language code, develop-
ers and managers often have to decide on a trade-off between isolating or splitting the native
code. Accessing this trade-off is estimated to improve the readability and maintainability of
the systems [13]. This design smell occurs when classes are scarcely used in multi-language

5https://github.com/zeromq/zmq-jni/blob/master/src/main/java/org/zeromq/jni/ZMQ.java

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://github.com/zeromq/zmq-jni/blob/master/src/main/java/org/zeromq/jni/ZMQ.java

8 Abidi et al.

 YUV420Image

+ pixels: byte[]

+width: int
Etc...

+ native toRgb888()
:RGB888Image
+native toYuv444()
:YUV444Image

RGB888Image

+ pixels: byte[]

+width: int
Etc...

+ native toYuv420()
:YUV420Image
+native toYuv444()
:YUV444Image

YUV444Image

+ pixels: byte[]

+width: int
Etc...

+ native toRgb888()
:RGB888Image
+ native toYuv420()
:YUV420Image

Image

Etc...

Etc...

Image

+ pixels: byte[]

+height: int
+width: int

+ native toYuv420()
:YUV420Image
+native toYuv444()
:YUV444Image

+ native toRgb888()
:RGB888Image

Etc...

Refactoring

XImage

Etc...

Etc...

.cpp.cpp.cpp

.cpp

 YUV420Image

Etc...

+ native toRgb888()
:RGB888Image
+native toYuv444()
:YUV444Image

RGB888Image

Etc...

+ native toYuv420()
:YUV420Image
+native toYuv444()
:YUV444Image

YUV444Image

Etc...

+ native toRgb888()
:RGB888Image
+ native toYuv420()
:YUV420Image

XImage

Etc...

Etc...

Foreign Implementation

Fig. 3. Illustration of Design Smell - Too Much Scattering

communication without satisfying both the coupling and the cohesion. In Figure 3 extracted
from a previous work [12], we have three classes with only two native methods declaration
with duplicated methods. A possible good solution would be to reduce the number of native
method declaration by removing the duplicated ones possibly by regrouping the common
ones in the same class. This will also reduce the scattering of multi-language participants
and concerns by keeping the multi-language code concentrated only in specific classes.

(8) Excessive Inter-language Communication: A wrong partitioning in components written in
different programming languages leads to many calls in one way or the other. This may
add complexity, increase the execution time, and may indicate a bad separation of concerns.
Occurrences of this design smell could be observed in systems involving different layers
or components. For example, the same object could be used and-or modified by multiple
components. An excessive call of native code within the same class, could be illustrated
whether by having too many native method calls in the same class or having the native
method call within a large range loop. In Godot, the function process() is called at each
time delta. The time delta is a small period of time that the game does not process anything
i.e., the engine does other things than game logic out of this time range. The foreign function
process() is called multiple times per second, in this case once per frame.6

(9) Local References Abuse: For any object returned by a JNI function, a local reference is created.
JNI specification allows a maximum of 16 local references for each method. Developers should
pay attention on the number of references created and always deleted the local references
once not needed using JNIDeleteLocalRef(). Listing 5 illustrates an example of this design
smell in which local references are created without deleting them.

(10) Memory Management Mismatch: Data types differ between Java and C/C++. When using
JNI, a mapping is performed between Java data types and data types used in the native
code.7 JNI handles Java objects, classes, and strings as reference types. JVM offers a set of
predefined methods that could be used to access fields, methods, and convert types from Java
to the native code. Those methods return pointers that will be used by the native code to
perform the calculation. The same goes for reference types, the predefined methods used

6https://github.com/godotengine/godot-demo-projects/blob/master/2d/pong/paddle.gd
7https://www.developer.com/java/data/jni-data-type-mapping-to-cc.html

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://github.com/godotengine/godot-demo-projects/blob/master/2d/pong/paddle.gd
https://www.developer.com/java/data/jni-data-type-mapping-to-cc.html

Are Multi-language Design Smells Fault-prone? An Empirical Study 9

Listing 5. Design Smell - Local References Abuse

/* C++ */
for (i=0; i < count; i++) {
jobject element = (*env)->GetObjectArrayElement(env, array, i);
if((*env)->ExceptionOccurred(env)) { break;}

allow to either return a pointer to the actual elements at runtime or to allocate some memory
and make a copy of that element. Thus, due to the differences of types between Java and
C/C++, the memory will be allocated to perform respective type mapping between those
programming languages. Memory leaks will occur if the developer forgets to take care of
releasing such reference types. Listing 6 presents an example in which the memory was not
released using ReleaseString or ReleaseStringUTF.

Listing 6. Refactoring - Memory Management Mismatch

/* C++ */
str = env->GetStringUTFChars(javaString, &isCopy);

(11) Not Caching Objects: To access Java objects’ fields from native code through JNI and invoke
their methods, the native code must perform calls to predefined functions i.e., FindClass(),
GetFieldId(), GetMethodId(), and GetStaticMethodId(). For a given class, IDs returned by Get-
FieldId(), GetMethodId(), and GetStaticMethodId() remain the same during the lifetime of the
JVM process. The call of these methods is quite expensive as it can require significant work
in the JVM. In such situation, it is recommended for a given class to look up the IDs once
and then reuse them. In the same context, looking up class objects can be expensive, a good
practice is to globally cache commonly used classes, field IDs, and method IDs. Listing 7
provides an example of occurrences of this design smell that does not use cached field IDs.

Listing 7. Design Smell - Not Caching Objects’ Elements

/* C++ */
int sumVal (JNIEnv* env,jobject obj,jobject allVal){

jclass cls=(*env)->GetObjectClass(env,allVal);
jfieldID a=(*env)->GetFieldID(env,cls,"a","I");
jfieldID b=(*env)->GetFieldID(env,cls,"b","I");
jfieldID c=(*env)->GetFieldID(env,cls,"c","I");
jint aval=(*env)->GetIntField(env,allVal,a);
jint bval=(*env)->GetIntField(env,allVal,b);
jint cval=(*env)->GetIntField(env,allVal,c);
return aval + bval + cval;}

(12) Excessive Objects: Accessing field’s elements by passing the whole object is a common practice
in object oriented programming. However, in the context of JNI, since the Object type does

, Vol. 1, No. 1, Article . Publication date: October 2020.

10 Abidi et al.

not exist in C programs, passing excessive objects could lead to extra overhead to properly
perform the type conversion. Indeed, this design smells occurs when developers pass a whole
object as an argument, although only some of its fields were needed, and it would have been
better for the system performance to pass only those fields except the purpose to pass the
object to the native side was to set its elements by the native code using SetxField methods,
with x the type of the field. Indeed, in the context of object-oriented programming, a good
solution would be to pass the object offering a better encapsulation, however, in the context
of JNI, the native code must reach back into the JVM through many calls to get the value of
each field adding extra overhead. This also increases the lines of code which may impact the
readability of the code [13]. Listing 8 presents an example smell of passing excessive objects.
The refactored solution of this smell would be to pass the class’ fields as a method parameters
as described in our published catalog [13].

Listing 8. Design Smell - Passing Excessive Objects

/* C++ */
int sumValues (JNIEnv* env,jobject obj,jobject allVal)
{ jint avalue= (*env)->GetIntField(env,allVal,a);
jint bvalue= (*env)->GetIntField(env,allVal,b);
jint cvalue= (*env)->GetIntField(env,allVal,c);
return avalue + bvalue + cvalue;}

(13) Unused Method Implementation: This appears when a method is declared in the host language
(Java in our case) and implemented in the foreign language (C or C++). However, this method
is never called from the host language. This could be a consequence of migration or refactoring
in which developers opted for keeping those methods to not break any related features.

(14) Unused Method Declaration: Similar to Unused Method Implementation, this design smell
occurs when a method is declared in the host language but is never implemented in the
native code. This smell and the previous one are quite similar. However, they differ in the
implementation part, while for the smell Unused Method Implementation, the method is
implemented but never called, in case of the smell Unused Method Declaration, the unused
method is not implemented and never called in the foreign language. Such methods could
remain in the system for a long period of time without being removed because having them
will not introduce any bug when executing the program but they may negatively impact the
maintenance activities and effort needed when maintaining those classes.

(15) Unused Parameters: Long list of parameters make methods hard to understand [33]. It could
also be a sign that the method is doing too much or that some of the parameters are no longer
used. In the context of multi-language programming, some parameters may be present in the
method signature however they are no longer used in the other programming language. Since
multi-language systems usually involve developers from different teams, those developers
often prefer not to remove such parameters because they may not be sure if the parameters
are used by other components. Listing 9 presents an illustration of this design smell where
the parameter acceleration is used in the native method signature. However, it is not used in
the implemented function.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 11

Listing 9. Design Smell - Unnecessary Parameters

/* C++ */
JNIEXPORT jfloat JNICALL Java_jni_distance
(JNIEnv *env, jobject thisObject,
jfloat time, jfloat speed,
jfloat acceleration) {
return time * speed;}

3 STUDY DESIGN
In this section, we present the methodology we followed to conduct this study. Figure 4 provides
an overview of our methodology.

Git
Repository

Identification of Bug
Fixing Commits

Identification of Bug
Inducing Commits

Parsing Using SrcMl

Cloning Projects

Applying Detection
Rules

Results Analysis

RQ1

RQ2

RQ3

Mining Software Repository

Static Source Code Analysis: Design Smells Detection
RQ4

RQ5

Fig. 4. Schematic Diagram of the Study

3.1 Setting Objectives of the Study
We started by setting the objective of our study. Our objective is to investigate the prevalence of
multi-language design smells in the context of JNI systems and the relation between those smells
with software fault-proneness. We also aim to investigate what kind of activities once performed
in smelly files are more likely to introduce bugs. The quality focus in this study is the occurrence
of bugs due to the presence of design smells in JNI systems. The perspective is that of researchers,
interested in the quality of JNI systems, and who want to get evidence on the impact of design smells
on the software fault-proneness. Also, these results can be of interest to professional developers
performing maintenance and evolution activities on JNI projects and who need to take into account
and forecast their effort, since like for mono-language projects, the presence of fault-prone files
is likely to increase the maintenance effort and cost. These results are also of interest to testers
since they need to know which files are more important to test. Finally, they can be of interest to
quality assurance teams or managers who could use design smells detection techniques to assess the
fault-proneness of in-house or to-be-acquired source code, to better quantify the cost-of-ownership
of JNI systems.

We defined our research questions as follows:
RQ1: Do Multi-language design smells occur frequently in open source projects?

Several articles in the literature discussed the prevalence, detection, and evolution of design
smells in the context of mono-language systems [34, 35]. Occurrences of design smells may
hinder the evolution of a system by making it hard for developers to maintain the system.
The detection of smells can substantially reduce the cost of maintenance and development

, Vol. 1, No. 1, Article . Publication date: October 2020.

12 Abidi et al.

activities. However, most of those research are focusing on mono-language systems. Thus, we
decided to fill this gap in the literature and investigate the frequency of design smells in the
context of multi-language systems. This research question is preliminary to the remaining
questions. It aims to examine the frequency and distribution of multi-language design smells
in the selected projects and their evolution over the releases of the project. We defined the
following null hypothesis: H1: there are no occurrences of the multi-language design smells
studied in the literature in the selected projects.

RQ2: Are some specific Multi-language design smells more frequent than others in open
source projects?
Given that multi-language design smells are prevalent in the studied systems, it is important to
know the distribution and evolution of the different types of smells for a better understanding
of the implication of their presence for maintenance activities. Developers are likely to
benefit from knowing the dominating smells to treat them in priority and avoid introducing
such occurrences. Consequently, in this research question, we aim to study whether some
specific types of design smells are more prevalent than others. We are also interested in the
evolution of each type of smells over the releases of the project. We aim to test the following
null hypothesis: H2: The proportion of files containing a specific type of design smell does not
significantly differ from the proportion of files containing other kinds of design smells.

RQ3: Are files with Multi-language design smells more fault-prone than files without?
Prior works reported that classes containing design smells in mono-language systems are
more prone to faults than other classes [25, 36]. Due to components written in different
languages, multi-language systems may have more complexities in architecture and inter-
component interactions. Given the known impacts of design smells on mono-language
systems, it is thus important to investigate the impacts of multi-language design smells on
the corresponding software systems. To examine this, we aim to investigate whether source
files containing multi-language design smells are more likely to experience faults than files
without smells. We investigate whether files with multi-language design smells are more
fault-prone than others by testing the null hypothesis: H3: The proportion of files experiencing
at least one bug does not significantly differ between files with design smells and files without.

RQ4: Are some specific Multi-language design smells more fault-prone than others?
During maintenance and quality assurance activities, developers are interested in identifying
parts of the code that should be tested and–or refactored in priority. Hence, we are interested
in identifying design smells that are more fault-prone than others. Thus, we defined the
null hypothesis. H4: There is no significant difference between the impacts of different kinds of
multi-language design smells on the fault-proneness of files containing those smells.

RQ5: What are the activities that are more likely to introduce bugs in smelly files?
During the maintenance of a project, having knowledge of possible risky activities could help
developers and managers to reduce the risk of bugs. They could benefit from that knowledge
to capture activities that should be performed with caution in smelly files. Hence, we are
interested in identifying what kinds of activities once performed in smelly files are likely
to introduce bugs. Capturing such information could provide insights about what kind of
activities could increase the risk of bugs in smelly files.

3.2 Data Collection
In order to address our research questions, we selected nine open source projects hosted on GitHub.
We decided to analyze those nine systems because they are well maintained, and highly active.
Another criteria for the selection was that those systems have different size and belong to different

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 13

Table 1. Research Objectives and ResearchQuestions

Research Objectives Methodology

Objective 1: Detect multi-language design smells Detection approach (case study of
JNI systems)

Objective 2: Investigate the prevalence of multi-
language design smells

RQ1 and RQ2

Objective 3: Study the relationship between multi-
language design smells and fault-proneness

RQ3 and RQ4

Objective 4: Identifying fault-inducing activities RQ5

Table 2. Overview of the Studied Systems

Systems Domain #Releases #Commits #Issues LOC Java C/C++
Rocksdb8 Facebook Database 189 8375 1748 487853 11% 83.1%
VLC-android9 Media Player and Database 176 12697 1091 125037 10.1% 6.7%
Realm10 Mobile Database 169 8244 3886 171705 82% 8.1%
Conscrypt11 Cryptography (Google) 32 3874 186 91765 85.3% 14%
Pljava12 Database 27 1236 123 71910 67% 29.7%
Javacpp13 Compiler 34 658 269 28713 98% 0.6%
Zstd-jni14 Data Compression (Facebook) 36 423 78 72824 4.3% 92.1%
Jpype15 Cross Language Bridge 14 895 305 53826 7.8% 58%
Java-smt16 Computation 22 1822 146 42049 88% 4.6%

domains. They also have the characteristic of being developed with more than one programming
language. While those systems contain different combinations of programming languages, for
this study, we are analyzing the occurrences of design smells for only Java and C/C++ code. For
each of the nine selected subject systems, we selected a minimum of 10 releases. For projects with
relatively frequent releases and comparatively a small volume of changes per release, we extended
our analysis to a few extra releases to cover a longer evolution period for our analysis. Tables 2 and
3 summarise the characteristics of the subject systems and releases. We also provide the percentage
of the Java and C/C++ code in the studied projects in Table 2.

Among the nine selected systems, VLC-android is a highly portable multimedia player for various
audio and video formats. Rocksdb is developed and maintained by Facebook, it presents a persistent
key-value store for fast storage. It can also be the foundation for a client-server database. Realm is a
mobile database that runs directly inside phones and tablets. Conscrypt is developed and maintained
by Google, it is a Java Security Provider (JSP) that implements parts of the Java Cryptography
Extension (JCE) and Java Secure Socket Extension (JSSE). Java-smt is a common API layer for
accessing various Satisfiability Modulo Theories (SMT) solvers. Pljava is a free module that brings
Java Stored Procedures, Triggers, and Functions to the PostgreSQL backend via the standard JDBC
interface. Javacpp provides efficient access to native C++ inside Java, not unlike the way some
C/C++ compilers interact with assembly language. Zstd-jni present a binding for Zstd native library
developed and maintained by Facebook that provides fast and high compression lossless algorithms
for Android, Java, and all JVM languages. Jpype is a Python module to provide full access to Java
from within Python.

, Vol. 1, No. 1, Article . Publication date: October 2020.

14 Abidi et al.

Table 3. Analyzed Releases in Each Project

Systems #Releases Analyzed Releases Analysis Periods
Rocksdb 10 5.0.2 - latest release 2017-18-01 - 2019-14-08
VLC-android 10 3.0.0 - latest release 2018-08-02 - 2019-13-09
Realm 10 0.90.0 - 5.15.0 2016-03-05 - 2019-04-09
Conscrypt 11 1.0.0.RC11 - 2.3.0 2017-25-09 - 2019-25-09
Pljava 12 1_2_0 - latest release 2015-20-11 - 2019-19-03
Javacpp 13 0.5 - 1.5.1-1 2013-07-04 - 2019-05-09
Zstd-jni 11 0.4.4 - latest release 2015-17-12 - 2019-19-08
Jpype 11 0.5.4.5 - latest release 2013-25-08 - 2019-13-09
Java-smt 10 0.1 - 3.0.0 2015-27-11 - 2019-30-08

3.3 Data Extraction
To answer our research questions, we first have to mine the repositories of the nine selected
systems to extract information about the occurrences of smells existing in each file and also the
bugs reported for those systems.

3.3.1 Detection of Design Smells.

Detection Approach: Because no tools are available to detect design smells in multi-language
systems, we extended the Ptidej Tool suite17 by building a new detection approach for JNI smells.
Specifically, we extended DECOR [35] to integrate new rules related to the combination of Java and
C/C++. We used srcML18, a parsing tool that converts source code into srcML, which is an XML
format representation. The srcML representation of source code adds syntactic information as XML
elements into the source code text. Listing 11 presents the srcML representation of the code snippet
presented in 10. The main advantage of srcML, is that it supports different programming languages,
and generates a single XML file for the supported programming languages. For now, our approach
includes only Java, C, and C++, however, it could be extended to include other programming
languages in the future. SrcML provides a wide variety of predefined functions that could be easily
used through the XPath to implement specific tasks. XPath is frequently used to navigate through
XML nodes, elements, and attributes. In our case, it is used to navigate through srcML elements
generated as an AST of a given project. The ability to address source code using XPath has been
applied to several applications [37].
Our detection approach reports smell detection results for a selected system in a CSV file. The

report provides detailed information for each smells detected such as smell type, file location, class
name, method name, parameters (if applicable). We then used a python script to post-process the
results to create a summary file. The summary results contain the total number of occurrences of
each type of smell in a specific file or class in a specific release of the selected system. Two members
of our research team manually validated the results of smell detection for five systems.

Detection Rules: The detection approach is based on a set of rules defined from the documenta-
tion of the design smells. Those rules were validated by the pattern community during the Writers’
workshop to document and validate the smells. For example, for the design smell Local Reference
Abuse, we considered cases where more than 16 references are created but not deleted with the
DeleteLocalRef function. The threshold 16 was extracted from developers blogs discussing best

17http://www.ptidej.net/tools/
18https://www.srcml.org/

, Vol. 1, No. 1, Article . Publication date: October 2020.

http://www.ptidej.net/tools/
https://www.srcml.org/

Are Multi-language Design Smells Fault-prone? An Empirical Study 15

practices and the Java Native Interface specification [17].19, 20 We present in the following two
examples of rules as well as the thresholds used to define them, and their detection process. All the
other rules are available in Appendix A. We also provide in the replication folder all the detection
rules for the design smells studied in this paper and the detection results.21

Listing 10. Example of Java Code

public class HelloWorld {

public static void main(String[] args) {
// Prints "Hello World!" to stdout
System.out.println("Hello World!");

}
}

Listing 11. Example of Java Code Converted to SrcML

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<unit xmlns="http://www.srcML.org/srcML/src" revision="0.9.5" language="Java"

filename="HelloWorld.java"><class><specifier>public</specifier> class
<name>HelloWorld</name> <block>{

<function><specifier>public</specifier> <specifier>static</specifier>
<type><name>void</name></type>
<name>main</name><parameter_list>(<parameter><decl><type><name><name>String

</name><index>[]</index></name></type>
<name>args</name></decl></parameter>)</parameter_list> <block>{

<comment type="line">// Prints "Hello World!" to stdout</comment>
<expr_stmt><expr><call><name><name>System</name><operator>.</operator><name>out
</name><operator>.</operator><name>println</name></name><argument_list>
(<argument><expr><literal type="string">"Hello World!"</literal>
</expr></argument>)</argument_list></call></expr>;</expr_stmt>

}</block></function>

}</block></class></unit>

(1) Rule for the smell Not Handling Exceptions

(f (y) | f ∈ {GetObjectClass, FindClass,GetFieldID,GetStaticFieldID,

GetMethodID,GetStaticMethodID})

AND (isErrrorChecked(f (y)) = False OR ExceptionBlock(f (y)) = False)

19https://www.cnblogs.com/cbscan/articles/4733508.html
20https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#global_local
21https://github.com/ResearchML/ImapctFault

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://www.cnblogs.com/cbscan/articles/4733508.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#global_local
https://github.com/ResearchML/ImapctFault

16 Abidi et al.

Our detection rule for the smell Not Handling Exceptions is based on the existence of call to
specific JNI methods requiring explicit management of the exception flow. The JNI methods
(e.g., FindClass) listed in the rule should have a control flow verification. The parameter y
represents the Java object/class that is passed through a native call for a purpose of usage by
the C/C++ side. Here, isExceptionChecked allows to verify that there is an error condition
verification for those specific JNI methods, while ExceptionBlock checks if there is an exception
block implemented. This could be implemented using Throw() or ThrowNew() or a return
statement that exists in the method in case of errors.
If we recheck Listing 1 in Section 2, the code illustrated in this example satisfies the rule
of using predefined methods to access classes and field Ids. Another condition is that those
methods are not followed by an explicit exception block. Thus, this example will be captured
by our approach as an occurrence of the design smell Not Handling Exceptions.

(2) Rule for the smell Local References Abuse

(NbLocalRe f erence(f1(y)) > MaxLocalRe f erenceThreshold) AND
(f1(y) | f1 ∈ {GetObjectArrayElement,GetObjectArrayElement,NewLocalRe f ,AllocObject,

NewObject,NewObjectA,NewObjectV ,NewDirectByteBu f f er ,

ToRe f lectedMethod,ToRe f lectedField}) AND
(∄ f2(y) | f2 ∈ {DeleteLocalRe f , EnsureLocalCapacity})

The smell Local References Abuse is introduced when the total number of local references
created inside a called method exceeds the defined threshold and without any call to method
DeleteLocalRef to free the local references or a call to method EnsureLocalCapacity to
inform the JVM that a larger number of local references is needed.
In the same vein, if we recall the example provided in Listing 5, in which a local reference is
created to retrieve an array element. This is implemented inside a loop (for). Thus, if the total
number for the count is more than 16, this indicates that we are exceeding the authorized
number of local references. In this situation, our approach will capture the method exceeding
the authorized number of local references and will then check for any possible usage of
functions to release the memory. Since this example does not provide any functions to release
the memory, this will be detected by our approach as an occurrence of the design smell Local
References Abuse.

Validation Approach:
To assess the recall and precision of our detection approach, we evaluated the results of our

detection approach at the first level by creating dedicated unit tests for the detector of each type of
smell to confirm that the approach is detecting the smells introduced in our pilot project. We relied
on six open source projects used in previous works [12, 13] on multi-language design smells. For
each of the systems, we manually identified occurrences of the studied design smells. Two of the
authors independently identified occurrences of the design smells in JNI open source projects, and
resolved disagreements through discussions with the whole research team. Using the ground truth
based on the definition of the smell and the detection results, we computed precision and recall
as presented in Table 4 to evaluate our smell detection approach. Precision computes the number
of true smells contained in the results of the detection tool, while recall computes the fraction of
true smells that are successfully retrieved by the tool. From the six selected systems, we obtained
a precision between 88% and 99%. and a recall between 74% and 90%. We calculate precision and
recall based on the following equations (1) and (2) respectively:

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 17

Precision =
{existinд true smells}

⋂
{detected smells}

{detected smells}
(1)

Recall =
{existinд true smells}

⋂
{detected smells}

{existinд true smells}
(2)

3.3.2 Detection of Fault-inducing Commits. Our studied systems use Github as the issue
tracker. We used Github APIs and PyDriller to mine the software repositories and get the list
of all the commit logs and resolved issues for the systems [38]. PyDriller provides a set of APIs
to extract information from Git repositories. These include important historical information re-
garding commits, developers, and modifications. PyDriller is very convenient for mining software
repositories to analyze changes or bugs. It rely on the SZZ algorithm [39] to detect changes that
introduce faults. We used PyDriller because this approach was not only evaluated regarding ex-
isting tools but also with experiments involving developers [38]. We started by retrieving all the
information related to the projects. We analyzed all commit messages to identify the fault-fixing
commits. We used a set of error related keywords to identify commits related to fault-fixing using
a heuristic similar to that presented in the study by Mockus and Votta [40]. Our list of keywords
include “fix”, “crash”, “resolves”, “regression”, “fall back”, “assertion”, “coverity”, “reproducible”,
“stack-wanted”, “steps-wanted”, “testcase”, “fail”, “npe”, “except”, “broken”, “bug”, “differential test-
ing”, “error”, “addresssanitizer”, “hang”, “permaorange”, “random orange”, “intermittent”, “steps to
reproduce”, “assertion”, “leak”, “stack trace”, “heap overflow”, “freez”, “str:”, “problem ”, “overflow”,
“avoid“, “ issue”, “workaround”, “break”, and “stop”.

To retrieve fault-inducing commits, given a commit, PyDriller returns the set of commits that
previously modified the lines from the files included in the given commit. It applies the SZZ
algorithm to find the commit when the bug was initially introduced as used in some earlier studies
[41–43]. To locate the fault-inducing commits, PyDriller algorithm works as follows: for every
file in the commit, it obtains the diff between the files, then obtains the list of all deleted lines.
It then blames the file to obtain the commits where the deleted lines were changed. We tagged
fault-inducing commits as buggy. We used this tag later to distinguish between files containing
bugs and files without.

Since Pydriller’s SZZ implementation was not previously evaluated, we manually examined the
bug inducing commits retrieved by Pydriller from two of our studied projects, Pljava and Zstd-jni.
We performed this manual analysis in two steps. First, we executed an existing implementation
of the SZZ algorithm available on GithHub22 on Pljava and Zstd-jni. We compared its reported
results with the results obtained from Pydriller. For each bug fixing commit, we manually verified
if the related bug inducing commit reported by Pydriller matches with the one reported by SZZ.
For that, we used two labels (True or False) to distinguish between the bug inducing commits that
match with those retrieved by SZZ and those that do not match. Next, one of the authors manually
verified if the changes in the bug inducing commits reported by Pydriller were indeed related to
the changes performed in the corresponding bug fixing commits. We also analyzed the commit
messages. We labeled each of the bug inducing commits with three tags (True, False, and Unclear).
We used the tag True in situations in which we were convinced that the change performed in the
bug fixing was indeed related to the changes applied in the bug inducing. We assigned False in
situations in which it was evident that the changes are not related, and Unclear, in situations in
which it was not completely evident to assign a True or False tag. We analyzed for Pljava and
Zstd-jni respectively a total of 113 and 96 bug-fixing commits. We performed a cleaning process

22https://github.com/saheel1115/szz

, Vol. 1, No. 1, Article . Publication date: October 2020.

18 Abidi et al.

Table 4. Validation of the Smell Detection Approach

Systems True Positive False Positive False Negative Recall Precision
openj9 3293 137 250 93% 96%
rocksdb 922 50 136 87% 95%
conscrypt 556 29 133 80% 95%
pilot project 32 0 0 100% 100%
pljava 511 5 53 90% 99%
jna 375 50 127 74% 88%
jmonkey 2210 142 185 92% 94%

on those commits and removed the commits related to typos fixing and merge commits. We kept
in our validation bug-fixing commits with their corresponding bug-inducing commits. Our final
dataset results on 61 bug-fixing commits for Pljava and 66 bug-fixing commits for Zstd-jni. From
our manual validation of fault-inducing commits reported by Pydriller for Pljava and Zstd-jni, we
found respectively precision values of 78.94% and 70.83%. Those values are computed considering
only the True and False tags for Java and C/C++ files resulting from our manual validation. From the
comparison between Pydriller’szz and the recent implementation of szz, we found for Pljava and
Zstd-jni, respectively precision values of 85% and 80%. We did not include in our validation the
recall because in our study we are considering only JNI code. However, szz is considering the
whole project in general without considering multi-language interactions. So, those results may
not generalize to the whole system. However, the results of our manual validation do not directly
contribute to any of our empirical findings, and we did this validation as a complementary step to
reduce the threats to validity of our study. We also analyzed changes related to multi-language
programming. Indeed, in many situations, the Java and C/C++ code are changed within the same
commit. This was helpful to validate the bug inducing commits involving Java and C/C++ code.

3.4 Analysis Method
We present in the following the analysis performed to answer our research questions.

3.4.1 Analyzing the prevalence of design smells. We investigate the presence of 15 different
kinds of design smells. Each variable si , j ,k reflects the number of times a file i has a smell j in a
specific release rk .
For RQ1, since we are interested to investigate the prevalence of multi-language design smells,

we aggregate these variables into a Boolean variable si ,k to indicate whether a file i has at least
any kind of smells in release rk . We calculate the percentage of files affected by at least one of the
studied design smells, sj . We use our detection approach to detect occurrences of multi-language
design smells following the methodology described earlier. For each file, we compute the value of a
variable Smellyi ,r which reflects if the file i has a least one type of smell in a specific release r . This
variable takes 1 if the file contains at least one design smell in a specific release r , and 0 otherwise.
Similarly, we also compute the value of variable Nativei ,r which takes 1 if the file i of a specific
release r is native and 0 if not. Since our tool is focusing on the combination of Java and C/C++, we
compute for each release the percentage of files participating in at least one JNI smells out of the
total number of JNI files (files involved in Java and C/C++).

For RQ2, we investigate whether a specific type of design smells is more prevalent in the studied
systems than other types of design smells. For that, we calculate for each system the percentage of
files affected by each type of the studied smells j . For each file i and for each release r , we defined a
flag Smellyi , j ,r which takes the value 1 if the release r of the file i contains the design smell type

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 19

j and 0 if it does not contain that specific smell. Based on this flag, we compute for each release
the number of files participating in that specific smell. We also calculate the percentage of smelly
files containing each type of smell. Note that the same file may contain more than one smell. We
investigate the presence of 15 different kinds of smells. We also compute the metric si , j ,k which
reflects the number of occurrences of smells of type j in a file i in a specific release rk .

3.4.2 Analyzing the impacts of smells on bugs. For RQ3, we focus on each of the smells to
study whether the proportion of files containing at least one bug, significantly differs between files
containing smells and files without smells. We consider the number of bugs ci ,k a file i encountered
between releases rk and rk+1, and convert ci ,k into a Boolean variable fi ,k (true if the file underwent
at least one bug, false otherwise). We rely on Fisher’s exact test [44] to check whether the proportion
of buggy files varies between two samples (files with and without smells). This test is useful for
categorical data that result from the classification of objects. It is used to examine the significance
of the association between the two kinds of classification. We also calculate the odds ratio (OR)
indicating the likelihood for an event (bug in our case) to occur. The odds ratio is calculated (as in
Equation (3)) as the ratio of the odds p of an event occurring in a sample, i.e., the odds that files
with some specific smells contain a bug (defined as experimental group), to the odds q of the same
event occurring in another sample, i.e., the odds that files with no smells contain a bug (defined as
control group):

OR =
p/(1 − p)
q/(1 − q)

(3)

An OR equal to 1 indicates that the event of interest is equally likely in both samples. While
an OR greater than 1 stipulates that the event is more likely to occur in the first sample (files
participating in some design smells), having an OR less than 1 indicates that it is more likely to
occur in the second sample (control group of files not participating in any design smell). We use the
fisher_exact function of the stats module from scipy Python package to compute the odds ratio and
the p-value for statistical significance of the test. By processing the commits and bug information
we set different flags for each of the source files. As mentioned earlier, the smelly flag takes the
value 1 if the associated source file contains at least one design smell of any type, and 0 otherwise.
The flag buggy, takes the value 1 if the associated source file was identified by SZZ algorithm
as related to a fault-inducing commit, and 0 otherwise. Now, for a given release of a system, we
consider all JNI source files for analysis. We count the number of buggy and non-buggy files with
design smells. Similarly, we also count the number of buggy and non-buggy files without design
smells. With these four values, we form the 2x2 contingency table for Fisher’s exact test.
For RQ4, we investigate the relationship between different types of design smells with fault-

proneness. Unlike using logistic regression for prediction purposes ([34, 45]), we use it to examine
whether some types of design smells are more related to fault-proneness. Our analysis approach
is similar to the one presented by Khomh et al. [34] where they investigate the impacts of differ-
ent types of anti-patterns on change- and fault-proneness using logistic regression model. The
multivariate logistic regression is based on the following Equation (4).

π (X1,X2,,Xn) =
eβ0+β1 .X1+ ... +βn .Xn

1 + eβ0+β1 .X1+ ... +βn .Xn
(4)

Here,

, Vol. 1, No. 1, Article . Publication date: October 2020.

20 Abidi et al.

• Xi are the independent variables for the logistic regression model. In our case, Xi represents
the number of smells of type Si in a given source file and S = {S1, S2, ..., Sn} is the set of the
types of smells investigated.
• βi are the model coefficients, and
• 0 ≤ π ≤ 1 is the value on the logistic regression curve representing the probability of bugs
for a file with smells.

In our regression model, independent variables are the number of occurrences of each type of
design smells. The dependent variable is the flag (buggy) representing the presence or absence
of bugs. Thus, the dependent variable is dichotomous and assumes values either 0 (non-buggy)
or 1 (buggy). For each system, we build a regression model and analyze the model coefficients
and p-values for individual types of smells. Each row in our data set contains the values of the
metrics (number of occurrences) for different smells, file size (LOC), number of previous bug-fix,
code churn, and the bug status (1 or 0).

Each logistic regression model gives the log odds (regression coefficient estimate) of individual
independent variables and their corresponding p-values for a particular system. The log odds
represent the factors by which the odds of the dependent variable will change for a unit change in
values of corresponding independent variables. When the logistic regression coefficient is positive
(βi > 0), unit increase of the value of the corresponding independent variable will increase the
log odds of the dependant variable by βi assuming that other independent variables are either 0
or remain unchanged. For a negative regression coefficient (βi < 0), on the other hand, the value
of the log odds of the dependant variable will decrease by βi for unit increase in the value of the
associated independent variable. Thus, the higher the positive log odds of an independent variable,
the higher is the impact of that independent variable on bug-proneness. We rank the smells based
on the model coefficients and the corresponding p-values. We select files that contain at least
one smell of any type. For a given type of smell, if the model coefficients show higher log odds
(LO) of bugs in the majority (in percentage) of the systems, we consider the smell to be related to
fault-proneness. It is important to mention that we analyzed the data for correlation among smells
and dropped one independent variable from each pair of highly correlated variables. This ensures a
non-redundant set of variables for the logistic regression models. From a highly correlated pair,
we keep the variable representing smell type with a comparatively higher overall prevalence in
the studied systems. Because the following metrics are known to be related to fault-proneness
[36, 46, 47], we add the file size, code churn, and the number of the previous occurrence of faults to
our model, to control their effect. Here, (i) LOC: number of lines of code in the file at that specific
release; (ii) Code Churn: the sum of lines added and removed in the file before that specific release;
(iii) No. of Previous-Bugs: the number of faults fixing related to that file before the particular release
r.

3.4.3 Topic Modeling to Identify Fault-inducing Activities. For RQ5, we are interested to
investigate what kind of activities once performed in smelly files, are more likely to introduce
bugs than other activities. We decided to analyze the commit messages that developers described
when they performed a change that was captured by the SZZ algorithm as a fault-inducing commit.
Having knowledge about those activities, developers could pay more attention to avoid introducing
additional bugs. We collect all the fault-inducing commits messages related to smelly files as
described earlier. We then classify those commit messages into different topics of activities based
on the keywords mentioned by developers using a mix of automated and manual techniques. We
decided to apply both topic modeling strategies and manual text analysis. Similar to previous work
[48, 49], we used Latent Dirichlet Allocation (LDA) [50], a well-known topic modeling algorithm
to analyze the text and extract a set of frequently co-occurring words (i.e., topics). We treat the

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 21

commit messages as a corpus of textual documents, that is used as a basis for topic modeling. Given
a corpus of n documents f1, ..., fn , topic modeling techniques automatically discover a set Z of
topics, Z = z1, ..., zk . The variable k presents the number of topics. It is an input that controls the
granularity of the topics.
To generate the topic of activities introducing bugs, we combine both manual and automated

approaches to build a categorization of risky activities. Based on developers’ commit messages,
similar to previous work [51], we used MALLET 23, a specific type of LDA implementation to
generate a set of topics based on frequently co-occurring words. We removed stop words using
MALLET stop words list (e.g., a, the, is, this, punctuation marks, numbers, and non-alphabetical
characters). We also used Porter stemmer to reduce words to their root words (e.g., programmer
became program) [52]. Since our objective is to study the activities that could introduce bugs once
performed in smelly files, we limited our study to the smelly files in which a bug was introduced
(Flag =1). Thus, our data-set resulted in 2707 commit messages. We manually inspected the commit
messages to estimate the number of possible topics for each system and also to assign a meaningful
name to each topic. Once the number of possible topics was fixed, we used a python script that takes
as input the list of all the commits messages in a CSV file and returns the list of commit messages
with common keywords that could be used to build the topic. Two of the authors went through all
the topics extracted for all the systems, and manually assigned meaningful names to each topic.
The name of the topic was decided based on manual inspections of the commit messages and the
keywords used to build that topic. We relied on the keywords generated by MALLET but also
on frequent keywords captured during the manual analysis. We manually analyzed a total of 500
commits. To resolve the disagreements, two of the authors went through those commit messages
and discussed the main topics of activities performed on those commits. Through those analysis,
we aim to capture the possible types of activities that were described in the commit messages of
the bug-inducing commits.

4 STUDY RESULTS
In this section, we report on the results of our study by addressing the five research questions
defined in Section 3. We focus on the three key research objectives of our study. First, research
questions RQ1 and RQ2 investigate the prevalence of the multi-language design smells in software
systems. Then, research questions RQ3 and RQ4 evaluate the impacts of the design smells on
the fault-proneness of JNI systems. Finally, RQ5 investigates fault-inducing activities. We present
additional insights into the findings from the research questions later in Section 5.

4.1 RQ1: Do Multi-language design smells occur frequently in open source projects?
We use our detection approach to detect occurrences of multi-language design smells following the
methodology discussed in Section 3. For each file, we compute the value of a variable Smellyi ,r
that takes 1 if the file i contains at least one design smell in a specific release r , and 0 otherwise.
We also compute Nativei ,r which takes 1 if the file i in a specific release r is native and 0 if not,
following the rules discussed in Section 3.4.1. Since our tool is focusing on the combination of Java
and C/C++, we compute for each release the percentage of files participating in at least one JNI
smell out of the total of JNI files (files involved in Java and C/C++).

Table 5 summarises our results on the percentages of files with JNI smells in each of the studied
systems. We report in this table the average number of JNI files participating in, at least one of the
studied design smells for each system. The percentage for each release is available in our replication
folder.21 Our results show that indeed, the JNI smells discussed in the literature are prevalent in the

23http://mallet.cs.umass.edu/

, Vol. 1, No. 1, Article . Publication date: October 2020.

http://mallet.cs.umass.edu/

22 Abidi et al.

Table 5. Percentage of JNI Files Participating in Design Smells in the Release of 9 Systems

Systems Releases Analyzed % Files with Smells Smells Density per KLOC
Zstd-jni 0.4.4 - latest release 61.36% 8.14
Javacpp 0.9 - 1.5.1-1 58.97% 17.84
Rocksdb 5.0.2 - latest release 36.30% 8.54
Java-smt 1.0.1 - 3.0.0 36.21% 26.08
VLC-android 3.0.0 - latest release 30.49% 17.67
Conscrypt 1.0.0.RC2 - 2.3.0 30.21% 14.05
Pljava REL1_5_STABLE - latest release 30.13% 7.59
Realm 0.90.0 - 5.15.0 11.67% 4.63
Jpype 0.5.4.5 - latest release 7.45% 7.45
Average 33.95% 12.44

nine studied open source projects with average occurrences from 10.18% in Jpype system to 61.36%
in Zstd-jni. The percentage of files with smells differ from one project to another. We compute the
average of the percentage of smells in all the systems. We find that on average, one-third (33.95%)
of the JNI files in the studied systems contain multi-language design smells.
Besides analyzing in each system the percentage of files affected by each of the studied JNI

smells, we also investigate their evolution over the releases. Figure 5 presents an overview of the
evolution of the percentage of files participating in multi-language design smells in the releases
of each system. All the details and data are available in the replication folder. The X-axis in Fig. 5
represents the releases analyzed. The Y-axis represents the percentage of files affected by at least
one of the studied design smells, while the lines are related to each system. Results show that
these percentages vary across releases in the nine systems with peaks as high as 69.04%. Some of
these systems i.e., Realm and Jpype contain respectively 4.61% and 6.41% in the first releases, but
the occurrences of smells increased over time to reach respectively 15.66% and 32.94%. Overall,
the number of occurrences of smells are increasing over the releases. Although, in some cases
such as in Rocksdb, the number of occurrences seems to decrease from one release to the next
one, (from 43.78% to 31.76%). The fact that developers might not be aware of occurrences of such
smells and the lack of tools for their detection might explain the observed prevalence. The observed
decrease in the number of occurrences observed in certain cases could be the result of fault-fixing
activities, features updates, or any other refactoring activities. In general, as one can see in Fig. 5,
these decreases are temporary; the number of occurrences often increase again in the next releases.
Overall, the proportions of files with smells are considerably high and the smells persist, thus
allowing to reject H1.

Summary of findings (RQ1): JNI smells discussed in the literature are prevalent and
persistent in open source projects. The number of their occurrences even increases over
the releases.

4.2 RQ2: Are some specific Multi-language design smells more frequent than others
in open source projects?

Similar to RQ1, we use our approach from Section 3 to detect the occurrence of the 15 design
smells in the nine subject systems. For each file and for each release, we defined a metric Smellyi ,r
which takes the value 1 if the release r of the file contains the design smell type i and 0 if it does

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 23

1 2 3 4 5 6 7 8 9
Releases

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (%

) o
f F

ile
s w

ith
 M

ul
ti-

la
ng

ua
ge

 D
es

ig
n

Sm
el

ls

Conscrypt
Realm
Java-smt

Zstd
Rocksdb

Javacpp
JPype

PlJava
VLC-android

Fig. 5. Evolution of Design Smells in the Releases of the 9 Systems

not contain that specific smell. We compute for each release the number of files participating in
that specific smell. Note that the same file may contain more than one smell.
Table 6 shows the distribution of the studied smells in the analyzed open source systems. We

calculate the percentage of files containing these smells and compute the average. Since our goal is
to investigate if some specific smells are more prevalent than others, we compute the percentage
of files containing that specific smell out of all the files containing smells. Our results show that
some smells are more prevalent than others, i.e., Unused parameter, Too much scattering, Too much
clustering, Unused Method Declaration, Not securing libraries, Excessive Inter-language communication.
In studied releases from Jpype, on average, 89.24% of the smelly files contain the smell Unused
parameter. In Java-smt, on average, 94.06% of the smelly files contain the smell Unused Parameters.
Our results also show that some smells discussed in the literature and developers’ blogs have a low
diffusion in the studied systems, i.e., Excessive objects, Not caching objects, Local reference abuse, while
the other smells are quite diffused in the analyzed systems. Conscrypt presents 79.60% occurrences
of the design smell Unused Parameters. As described in the commit messages in Conscrypt, this could
be explained by the usage of BoringSSL which has many unused parameters. Results presented in
Table 6 report a range of occurrences from 0% to 94.06%. Some specific types of smells seem to be
more frequent than others. On average Unused Parameters represents 57.36% of the existing smells,
followed by the smell Too Much Clustering with 20.91%. We also report in Table 7, the distribution
of smells normalized by the number of KLOC.
For each system, in addition to analyzing the percentage of files affected by each type of smell,

we also investigate the evolution of the smell over the releases. Figures 6, 7, 8, 9, 10, and 11
provide an overview of the evolution of smells respectively in Rocksdb, Javacpp, Pljava, Realm,
Jpype, and Java-smt releases. The X-axis in these figures represents the releases analyzed. The
Y-axis represents the number of files in that specific system affected by that kind of design smells,

, Vol. 1, No. 1, Article . Publication date: October 2020.

24 Abidi et al.

Table 6. Percentage of JNI Files Participating in Design Smells in the Releases of the Studied Systems

System↓/Smells→ UP UM TMS TMC UMI ASR EO EILC NHE NCO NSL HCD NURP MMM LRA
Conscrypt 79.60% 4.40% 0% 1.90% 0% 3.99% 0% 1.90% 3.99% 0% 5.71% 0% 3.80% 3.78% 3.78%
Realm 67.68% 3.066% 9.75% 14.86% 2.32% 4.33% 0% 12.58% 5.15% 0% 2.17% 0% 0 % 0% 0.79%
Java-smt 94.06% 2.96% 0% 2.96% 0% 0% 0% 0% 0% 0% 2.96% 0% 2.96% 0% 0%
Zstd-jni 10.46% 0.95% 13.98% 12.36% 3.47% 17.98% 0% 23.55% 21.45% 0% 5.74% 3.47% 0% 2.25% 0%
Rocksdb 44.55% 5.48% 34.48% 23.47% 0% 0.67% 0% 14.35% 0.67% 0.91% 2.85% 0.95% 0.95% 0.79% 0.10%
Javacpp 2.53% 31.70% 74.19% 19.49% 0% 0% 0% 69.14% 0% 0% 6.48% 2.51% 0% 0% 0%
Jpype 89.24% 0% 0% 0% 0% 1.78% 0% 0.35% 1.78% 0% 0% 0% 0% 8.25% 1.07%
Pljava 64.45% 35.62% 31.02% 8.42% 2.04% 0% 0% 4.36% 2.04% 0% 0% 0% 0% 2.04% 0%
VLC-android 63.67% 25.71% 24.74% 17.10% 7.34% 3.67% 0.82% 13.29% 3.67% 0% 3.92% 0% 6.01% 0% 3.67%
Median 64.45 4.4 13.98 12.36 0 1.78 0 12.58 2.04 0 2.96 0 0 0.79 0.1
Average 57.36 12.21 20.91 11.17 1.69 3.60 0.09 15.50 4.31 0.10 3.31 0.77 1.52 1.9 1.05
Acronyms: Up: UnusedParameter, UM: UnusedMethodDeclaration, TMS: ToomuchScattering, TMC: Toomuchclustring
UMI: UnusedMethodImplementation, ASR: AssumingSafeReturnValue, EO: ExcessiveObjects
EILC:excessiveInterlangCommunication, NHE: NotHandlingExceptions, NCO: NotCachingObjects, NSL: NotSecuringLibraries
HCD: HardCodingLibraries, NURP: NotUsingRelativePath,MMM: MemoryManagementMismatch, LRA: LocalReferencesAbuse

Table 7. Number of Design Smells per KLOC in the Releases of the Studied Systems

System↓/Smells→ UP UM TMS TMC UMI ASR EO EILC NHE NCO NSL HCD NURP MMM LRA
Conscrypt 6.091 7.089 0.0 0.022 0.0 0.07 0.0 0.07 0.16 0.0 0.15 0.0 0.25 0.02 0.13
Realm 1.81 0.086 0.075 0.097 0.024 0.04 0.0 2.36 0.12 0.0 0.011 0.0 0.0 0.0 0.010
Java-smt 8.34 16.56 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.15 0.78 0.0 0.0
Zstd-jni 2.0 0.22 0.11 0.23 1.09 1.08 0.0 1.60 1.15 0.0 0.078 0.07 0.0 0.50 0.0
Rocksdb 1.32 0.18 0.34 0.23 0.0 0.02 0.0 5.72 0.03 0.011 0.081 0.019 0.02 0.02 0.0
Javacpp 0.05 7.06 1.93 0.5 0.0 0.0 0.0 8.06 0.0 0.0 0.20 0.04 0.0 0.0 0.0
Jpype 3.18 0.0 0.0 0.0 0.0 1.37 0.0 0.007 1.32 0.0 0.0 0.0 0.0 1.5 0.08
Pljava 5.10 1.7 0.41 0.06 0.02 0.0 0.0 0.04 0.11 0.0 0.0 0.0 0.0 0.14 0.0
VLC-android 4.18 4.75 0.46 0.4 0.55 0.1 0.010 5.47 0.1 0.0 0.37 0.0 1.25 0.0 0.05
Acronyms: Up: UnusedParameter, UM: UnusedMethodDeclaration, TMS: ToomuchScattering, TMC: Toomuchclustring
UMI: UnusedMethodImplementation, ASR: AssumingSafeReturnValue, EO: ExcessiveObjects
EILC:excessiveInterlangCommunication, NHE: NotHandlingExceptions, NCO: NotCachingObjects, NSL: NotSecuringLibraries
HCD: HardCodingLibraries, NURP: NotUsingRelativePath,MMM: MemoryManagementMismatch, LRA: LocalReferencesAbuse

while the lines are related to the different types of smells we studied. Depending on the system,
some smells seem more prevalent than the others. In Javacpp, Too Much Scattering, and Excessive
Inter-language Communication seem to be the predominant ones, while Unused Parameters is less
frequent in this system. However, in general, for other systems including Rocksdb and Realm, Unused
Parameters seems to be dominating. Results show that most of the smells generally persist within
the project. The smells tend to persist in general or even increase from one release to another.
Although, in some specific cases, for example, the design smell Unused Parameters in Rocksdb,

presented a peak of 82 and decreased to 28 in the next release. However, the number of files
containing this smell increased in the next releases and reached to 34 in the last release analyzed.
We studied the source code files containing some occurrences of the design smell unused parameters
between releases (5.11.2 and 5.14.3) of Rocksdb to understand the reasons behind the peak and the
decrease. We found that some method parameters were unused on Rocksdb (5.11.2) and have been
refactored during the next releases by removing occurrences of this smell and also due to project
migration features. Another example of refactoring of the code smell Unused Parameters from one
release to another was observed in Conscrypt, where they refactored Unused Parameters occurrences
due to errors generated by those occurrences in the release 1.0.0.RC14 (“commit message: Our Android
build rules generate errors for unused parameters. We cant enable the warnings in the external build
rules because BoringSSL has many unused parameters”). From our results, we can clearly observe

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 25

that occurrences of JNI smells are not equally distributed. We conclude that the proportions of files
with specific smells vary significantly between the different kinds of smells. We, therefore, reject
hypothesis H2.

1 2 3 4 5 6 7 8 9
Releases

0

20

40

60

80

Nu
m

be
r o

f F
ile

s w
ith

 M
ul

ti-
la

ng
ua

ge
 D

es
ig

n
Sm

el
ls

NBUnusedParameter
NBUnusedMethodDeclaration
NBToomuchScattering
NBToomuchclustring
NBAssumingSafeReturnValue
NBexcessiveInterlangCommunication
NBNotHandlingExceptions
NBNotSecuringLibraries
NBHardCodingLibraries
NBNotUsingRelativePath
NBMemoryManagementMismatch
NBLocalReferencesAbuse

Fig. 6. Evolution of the Different Kinds of Smells in Rocksdb Releases

Summary of findings (RQ2): Some JNI smells are more prevalent than others, e.g., Unused
Parameters, Too Much Scattering, Unused Method Declaration while others are less prevalent,
e.g., Excessive Objects and Not Caching Objects. Most of the smells persist with an increasing
trend from one release to another in most of the systems.

4.3 RQ3: Are files with Multi-language design smells more fault-prone than files
without?

Prior works show that design smells increase the fault-proneness of Java applications[25, 36]. Since
JNI systems introduce other kinds of design smells and those smells are prevalent as observed in
research questions RQ1 and RQ2, we are interested in studying the impacts of those design smells
on the fault-proneness of JNI systems. For that, we applied Fisher’s exact test [44] to check whether

, Vol. 1, No. 1, Article . Publication date: October 2020.

26 Abidi et al.

1 2 3 4 5 6 7 8 9 10
Releases

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f F
ile

s w
ith

 M
ul

ti-
la

ng
ua

ge
 D

es
ig

n
Sm

el
ls

NBUnusedParameter
NBUnusedMethodDeclaration
NBToomuchScattering
NBToomuchclustring

NBexcessiveInterlangCommunication
NBNotSecuringLibraries
NBHardCodingLibraries

Fig. 7. Evolution of the Different Kinds of Smells in Javacpp Releases

the proportion of bugs varies between two samples (files with and without smells) as discussed
in Section 3.4.2. The columns Smelly-buggy (SB), Buggy-Notsmelly (BNS), Smelly-NotBuggy (SNB),
NotBuggy-NotSmelly (NBNS) in Tables 8 and 9 contain the values of the contingency tables for
the Fisher’s exact test; each row corresponding to a single release. The numbers reported in the
cells of these columns are the total number of JNI source code files (for the specific release) with
or without smells and with or without bugs, depending on the column. More specifically, these
columns present respectively: the total number of source code files with smells and are buggy
(SB), the total number of source code files containing bugs without occurrences of smells (BNS),
smelly source code files that are not buggy (SNB), and source code files that do not present any
occurrences of smells or bugs (NBNS). The value of the odds ratio (OR) greater than 1 from Fisher’s
exact test indicates that files with design smells have higher odds of being buggy compared to
files without design smells. The values OR < 1 indicate that files with design smells have lower
odds of having faults, while OR = 1 refers to no impact of design smells on fault-proneness of
the source files. The p-value shows the probability of observing the odds ratio by chance, and
thus lower values (< 0.05) of p-value confirm the significance of the impacts of design smells on
fault-proneness. In addition to significant p-values, we examine the confidence intervals of the
odds ratios. A confidence interval specifies the range where the true odds ratio lies in. A significant
p-value value (< 0.05) of an odds ratio (> 1.0) with confidence interval not containing 1 confirms a
true relationship between design smells and fault-proneness. We marked the p-values of such cases
with (*) in Table 8 and Table 9.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 27

1 2 3 4 5 6
Releases

0

5

10

15

20

25

30

35

Nu
m

be
r o

f F
ile

s w
ith

 M
ul

ti-
la

ng
ua

ge
 D

es
ig

n
Sm

el
ls

NBUnusedParameter
NBUnusedMethodDeclaration
NBToomuchScattering
NBToomuchclustring

NBUnusedMethodImplementation
NBexcessiveInterlangCommunication
NBNotHandlingExceptions
NBMemoryManagementMismatch

Fig. 8. Evolution of the Different Kinds of Smells in Pljava Releases

Tables 8 and 9 report the results of applying Fisher’s exact test and present the values of odds
ratios for the studied systems. Each row of those tables shows, for each system and each release,
the odds for a file containing at least one type of design smells to be involved in a bug inducing
change. In most of the analyzed releases, Fisher’s exact test indicates a significant difference of
proportions between fault-prone JNI files with and without design smells. In some systems (e.g.,
Rocksdb, Javacpp, and Java-smt), odds ratios for specific releases are less than one, or the p-value
is not statistically significant. However, in general, the values of odds ratios are high (in general
greater than 2) in most cases. For Zstd-jni, we found odds ratios always higher than 13. Having
this high odds could be explained by the large number of smells contained in that system, as
described in Table 5, but also by the nature of smells existing in this system. The higher values of
statistically significant odds ratios in most cases and the confidence intervals of those significant
odds ratios being above the value 1 in some cases show that multi-language design smells are
related to fault-proneness. However, this relationship varies with systems and further investigation
is necessary to generalize.

From analyzing fault-fixing commit messages, we identified some commits reporting a refactoring
for specific smells e.g., “removing unused parameter”, “implementing the handling of exception”. This
could explain cases where Smelly-Buggy values decrease from one release to the other, while the
overall number of occurrences of smells are in general increasing from one release to the other, as
shown in Fig. 5. For example, in Rocksdb, Smelly-Buggy values are decreasing from one release to
the other, while Smelly-NonBuggy is increasing. This could be explained by the nature of the smells
and the refactoring applied. Since one file can contain more than one type of smell, the refactoring
of some specific types of smells could decrease the risk of bugs while leaving the file still smelly.
This suggests that some specific smells could be more correlated with bugs than others. These
hypotheses motivate us to further investigate the relationship between specific types of smells and

, Vol. 1, No. 1, Article . Publication date: October 2020.

28 Abidi et al.

1 2 3 4 5 6 7 8 9
Releases

0

10

20

30

40

50

Nu
m

be
r o

f F
ile

s w
ith

 M
ul

ti-
la

ng
ua

ge
 D

es
ig

n
Sm

el
ls

NBUnusedParameter
NBUnusedMethodDeclaration
NBToomuchScattering
NBToomuchclustring
NBUnusedMethodImplementation

NBAssumingSafeReturnValue
NBexcessiveInterlangCommunication
NBNotHandlingExceptions
NBNotSecuringLibraries
NBLocalReferencesAbuse

Fig. 9. Evolution of the Different Kinds of Smells in Realm Releases

1 2 3 4 5 6 7 8 9
Releases

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f F
ile

s w
ith

 M
ul

ti-
la

ng
ua

ge
 D

es
ig

n
Sm

el
ls

NBUnusedParameter
NBAssumingSafeReturnValue
NBexcessiveInterlangCommunication

NBNotHandlingExceptions
NBMemoryManagementMismatch
NBLocalReferencesAbuse

Fig. 10. Evolution of the Different Kinds of Smells in Jpype Releases

fault-proneness (RQ4) and also the activities that once performed in smelly files could lead to bugs
(RQ5).

We, therefore, conclude that, in most cases, there is a relation between multi-language design
smells and fault-proneness in the context of JNI systems: a greater proportion of JNI files partici-
pating in design smells experienced bugs compared to other classes. We therefore reject H3. The
rejection of H3 and the statistically significant odds ratios provide a posteriori concrete evidence of
the impact of multi-language design smells on fault-proneness in the context of JNI files.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 29

1 2 3 4 5 6 7 8 9
Releases

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f F
ile

s w
ith

 M
ul

ti-
la

ng
ua

ge
 D

es
ig

n
Sm

el
ls

NBUnusedParameter
NBUnusedMethodDeclaration
NBToomuchclustring
NBNotHandlingExceptions
NBNotSecuringLibraries
NBHardCodingLibraries
NBNotUsingRelativePath

Fig. 11. Evolution of the Different Kinds of Smells in Java-smt Releases

Summary of findings (RQ3): Our results suggest that files with occurrences of the studied
smells are more likely to be associated with faults than files without these smells and this
relationship is statistically significant in most cases.

, Vol. 1, No. 1, Article . Publication date: October 2020.

30 Abidi et al.

Table 8. Fisher’s Exact Test Results for the Fault-proneness of Files with and without Design Smells (1)

System Releases SB BNS SNB NBNS Odds Ratios p-values Confidence Interval

Ro
ck
sd
b

rocksdb-5.0.2 82 85 17 108 6.1287 < 0.01* (1.2184,2.4076)
rocksdb-5.4.6 89 90 23 98 4.2135 < 0.01 (0.8979,1.9787)
rocksdb-5.6.2 90 80 24 107 5.0156 < 0.01* (1.0771,2.1480)
rocksdb-5.9.2 97 84 30 101 3.8876 < 0.01 (0.8563,1.8592)
rocksdb-5.11.2 99 86 42 95 2.6038 < 0.01 (0.4929,1.4211)
rocksdb-5.14.3 50 101 38 88 1.1464 0.607 (-0.3729,0.6462)
rocksdb-5.17.2 51 92 39 97 1.3787 0.249 (-0.1840,0.8263)
rocksdb-5.18.3 50 101 43 88 1.0131 1.0 (-0.4848,0.5109)
rocksdb-6.1.1 49 94 55 90 0.8529 0.541 (-0.6404,0.3224)
rocksdb-latest release 49 101 56 83 0.7190 0.181 (-0.8108,0.1511)

Pl
ja
va

pljava-1_4_3 0 36 0 100 - 1.0 -
pljava-rel1_5_stable 33 38 13 78 5.2105 < 0.01 (0.9008,2.4005)
pljava-1_5_0b3 32 33 14 83 5.7489 < 0.01* (1.0026,2.4954)
pljava-1_5_0 33 37 13 79 5.4199 < 0.01 (0.9388,2.4413)
pljava-1_5_1b1 32 38 14 78 4.6917 < 0.01 (0.8077,2.2839)
pljava-1_5_1b2 39 36 14 76 5.8809 < 0.01* (1.0436,2.4998)
pljava-1_5_2 38 34 15 78 5.8117 < 0.01* (1.0392,2.4806)
pljava-latest release 39 35 16 76 5.2928 < 0.01 (0.9600,2.3727)

Re
al
m

realm-java-0.90.0 21 89 2 365 43.0617 < 0.01* (2.2938,5.2315)
realm-java-1.2.0 20 169 2 285 16.8639 < 0.01* (1.3592,4.2912)
realm-java-2.3.2 33 177 3 269 16.7175 < 0.01* (1.6194,4.0135)
realm-java-3.7.2 43 165 8 271 8.8280 < 0.01* (1.3988,2.9570)
realm-java-4.4.0 48 166 18 262 4.2088 < 0.01 (0.8616,2.0127)
realm-java-5.4.0 50 165 21 261 3.7662 < 0.01 (0.7804,1.8718)
realm-java-5.7.1 52 164 22 260 3.7472 < 0.01 (0.7856,1.8565)
realm-java-5.9.0 54 161 23 260 3.7915 < 0.01 (0.8066,1.8589)
realm-java-5.11.0 54 161 24 259 3.6195 < 0.01 (0.7668,1.8059)
realm-java-5.15.0 54 162 24 258 3.5833 < 0.01 (0.7569,1.7957)

VL
C
-a
nd

ro
id

vlc-android-3.0.92 19 23 8 40 4.1304 < 0.01 (0.4460,2.3907)
vlc-android-3.1.6 22 22 6 40 6.6666 < 0.01 (0.8552,2.9390)
vlc-android-3.1.0 22 22 6 40 6.6666 < 0.01 (0.8552,2.9390)
vlc-android-3.0.13 18 24 7 41 4.3928 < 0.01 (0.4720,2.4879)
vlc-android-latest release 21 23 13 33 2.3177 0.081 (-0.0322,1.7134)
vlc-android-3.0.11 19 24 6 41 5.4097 < 0.01 (0.6411,2.7352)
vlc-android-3.0.0 19 22 6 43 6.1893 < 0.01 (0.7709,2.8747)
vlc-android-3.0.96 19 23 8 40 4.1304 < 0.01 (0.4460,2.3907)
vlc-android-3.1.2 22 22 6 40 6.6666 < 0.01 (0.8552,2.9390)

Jp
yp
e

jpype-0.5.4.5 5 28 0 45 - < 0.02 -
jpype-0.5.5.1 5 28 0 45 - < 0.02 -
jpype-0.5.5.4 5 28 0 45 - < 0.02 -
jpype-0.5.6 5 29 0 44 - < 0.02 -
jpype-0.5.7 6 28 0 44 - < 0.01 -
jpype-0.6.0 6 28 0 44 - < 0.01 -
jpype-0.6.1 6 28 0 44 - < 0.01 -
jpype-0.6.2 6 28 1 43 9.2142 < 0.05 (0.0509,4.3906)
jpype-0.6.3 6 28 3 43 3.0714 0.158 (-0.3432,2.5875)
jpype-latest release 23 42 5 15 1.6428 0.430 (-0.6362,1.6291)

* = significant p-values for odd ratios with confidence intervals not containing 1

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 31

Table 9. Fisher’s Exact Test Results for the Fault-proneness of Files with and without Design Smells (2)

System Releases SB BNS SNB NBNS Odds Ratios p-values Confidence Interval

Ja
va
cp
p

javacpp-0.5 0 9 0 5 - 1.0 -
javacpp-0.9 10 4 3 3 2.5 0.612 (-1.0599,2.8926)
javacpp-1.1 0 10 0 4 - 1.0 -
javacpp-1.2 9 5 5 2 0.72 1.0 (-2.2994,1.6424)
javacpp-1.2.1 12 5 2 2 2.4 0.574 (-1.3449,3.0958)
javacpp-1.2.7 7 4 7 3 0.75 1.0 (-2.1148,1.5395)
javacpp-1.3 10 1 4 6 15.0 < 0.05 (0.2942,5.1218)
javacpp-1.3.2 11 6 3 1 0.6111 1.0 (-2.9646,1.9797)
javacpp-1.4 12 5 4 2 1.2 1.0 (-1.8101,2.1747)
javacpp-1.4.2 14 4 3 3 3.5 0.306 (-0.6955,3.2011)
javacpp-1.4.4 11 2 8 4 2.75 0.378 (-0.9147,2.9379)
javacpp-1.5 14 5 5 1 0.56 1.0 (-2.9573,1.7977)
javacpp-1.5.1-1 10 4 9 2 0.5555 0.660 (-2.5093,1.3337)

Zs
td
-jn

i

zstd-jni-0.4.4 4 0 0 21 - < 0.01 -
zstd-jni-1.3.0-1 13 0 9 15 - < 0.01 -
zstd-jni-1.3.2-2 15 2 7 13 13.9285 < 0.01 (0.8958,4.3721)
zstd-jni-1.3.3-1 16 2 7 13 14.8571 < 0.01 (0.9649,4.4320)
zstd-jni-1.3.4-1 20 1 8 12 30.0 < 0.01* (1.2025,5.5998
zstd-jni-1.3.4-8 20 1 8 12 30.0 < 0.01* (1.2025,5.5998)
zstd-jni-1.3.5-3 20 1 8 12 30.0 < 0.01* (1.2026,5.5999)
zstd-jni-1.3.7 20 1 8 12 30.0 < 0.01* (1.2026,5.5998)
zstd-jni-1.3.8-1 20 1 8 12 30.0 < 0.01* (1.2026,5.5998)
zstd-jni-1.4.0-1 22 1 7 12 37.7142 < 0.01* (1.4198,5.8403)
zstd-jni-latest release 22 1 7 12 37.7142 < 0.01* (1.4198,5.8403)

C
on
sc
ry
pt

conscrypt-1.1.1 42 52 12 46 3.0961 < 0.01 (0.3758,1.8844)
conscrypt-1.0.0.RC14 4 64 0 54 - 0.128 -
conscrypt-1.0.1 38 55 11 43 2.7008 < 0.02 (0.2128,1.7743)
conscrypt-2.1.0 47 53 17 42 2.1908 < 0.05 (0.0975,1.4711)
conscrypt-1.0.2 38 55 11 43 2.7008 < 0.02 (0.2128,1.7742)
conscrypt-1.4.2 6 0 55 97 - < 0.01 -
conscrypt-1.2.0 45 52 15 46 2.6538 < 0.01 (0.2697,1.6823)
conscrypt-1.0.0.RC11 37 55 11 43 2.6297 < 0.02 (0.1844,1.7493)
conscrypt-1.0.0.RC2 23 20 6 90 17.25 < 0.01* (1.8270,3.8686)
conscrypt-1.0.0.RC8 26 59 11 46 1.8428 0.172 (-0.1922,1.4148)

Ja
va
-s
m
t java-smt-0.60 0 23 0 7 - 1.0 -

java-smt-1.0.1 21 20 5 9 1.89 0.3667 (-0.6165,1.8896)
java-smt-2.0.0-alpha 22 16 11 12 1.5 0.5966 (-0.6357,1.4467)
java-smt-2.2.0 30 19 9 10 1.7543 0.4132 (-0.5061,1.6304)
java-smt-3.0.0 19 17 22 12 0.6096 0.3414 (-1.4556,0.4658)

* = significant p-values for odd ratios with confidence intervals not containing 1

, Vol. 1, No. 1, Article . Publication date: October 2020.

32
A
bidiet

al.

Table 10. Log Likelihood of Different Smells from the Logistic Regression models for Bug-proneness of the Studied Systems

Design Smells ↓ / Systems→
Conscrypt Java-smt Javacpp Jpype Pljava Realm Rocksdb VLC-android Zstd-jni
Coeff. Rank Coeff. Rank Coeff. Rank Coeff. Rank Coeff. Rank Coeff. Rank Coeff. Rank Coeff. Rank Coeff. Rank

Excessive Inter-language
Communication

-9.538e+15 NA -1.765e+14 -5.380e+01 -4.649e+01 4.495 2 1.640e+01 4 -7.653e+13 -4.265e+13

Too Much Clustering 3.280e+15 1 -6.864e+03 3.280e+15 1 NA -5.488e+02 -9.514e+01 8.593e+02 3 1.265e+15 2 2.949e+14 3
Too Much Scattering NA NA 2.304e+14 4 NA 1.492e+02 1 9.310e+01 1 1.324e+03 2 3.438e+15 1 1.077e+15 2
Unused Method Declaration -6.275e+13 2.846e+01 1 9.799e+13 6 NA 4.883e+01 2 -6.092e+01 -6.785e+01 -6.359e+12 -2.448e+13
Unused Method Implementation NA NA NA NA -3.446e+02 -2.288e+02 NA -5.237e+14 9.511e+13 5
Unused Parameter 8.145e+13 3 8.497 2 7.421e+14 2 -5.527e-02 -7.090e-02 4.828 3 -2.286e+01 3.363e+13 3 2.092e+13 7
Excessive Objects NA NA NA NA NA NA NA NA NA
Not Handling Exceptions 2.089e+14 2 NA NA 1.993e+01 1 -1.999e+02 -9.445e+01 -4.270e+01 -2.951e+15 2.373e+14 4
Not Caching Objects NA NA NA NA NA NA NA NA NA
Not Securing Libraries -2.915e+13 1.093 3 3.308e+14 3 NA NA -9.201e+01 -2.498e+03 -8.185e+14 -1.569e+15
Hard Coding Libraries NA -8.665e+01 1.235e+14 5 NA NA NA 4.936e+03 1 NA 2.135e+15 1
Memory Management Mismatch -1.180e+15 NA NA 1.162e-01 2 NA NA -1.393e+03 NA 4.684e+13 6
Local References Abuse -1.301e+15 NA NA -2.462e+02 NA -1.891e+02 -3.474e+04 -8.620e+15 NA
LOC -8.459e+11 -4.280e-03 1.159e+11 8.468e-05 5.328e-04 2.488e-03 8.713e-01 1.091e+11 5.331e+10
Previous bug-fix 6.363e+14 1.864e+02 1.293e+15 5.728e+01 3.010e+02 9.480e+01 1.448e+03 7.873e+14 7.437e+14

Null deviance 2034.3 5.2010e+02 349.15 1.0902e+03 2.3975e+03 6.6378e+03 4048.24 1245.10 589.62
Residual deviance 1513.8 2.7256e-09 2595.14 3.5622e-10 4.8079e-10 8.8774e-10 8.5475 360.44 2595.14
AIC 1535.8 16 2615.1 16 20 24 34.55 384.44 1107.3

,Vol.1,N
o.1,A

rticle
.Publication

date:O
ctober2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 33

4.4 RQ4: Are some specific Multi-language design smells more fault-prone than
others?

Findings from RQ3 suggest that source code files with smells in JNI systems are often more prone
to faults than files without smells. Although these findings give a general impression of the impacts
of smells on the fault-proneness of JNI systems, it is important to know which smell(s) are more
related to faults. When we are able to identify some specific smells to be more related to faults, we
can prioritize those smells during the maintenance of the JNI systems.
As presented in our methodology described in Section 3.4.2, we apply multivariate logistic

regression to examine whether some types of design smells are more related to fault-proneness. In
our logistic regression models, independent variables are the number of occurrences of each type
of design smells. The dependent variable is a dichotomous flag (buggy) that assumes values either
0 (non-buggy) or 1 (buggy). For each system, we build a logistic regression model and analyze
the model coefficients and p-values for individual types of smells. To address multicollinearity
among the independent variables, we drop one of the variables from each highly correlated pair of
variables from the models. From our analysis, we observed two pairs of smells highly correlated-
(Not Handling Exceptions, Assuming Safe Return Value) and (Not Securing Libraries, Not Using Relative
Path) with correlation (Spearman’s) coefficients of 0.91 and 0.60, respectively. We keep Not Handling
Exceptions and Not Securing Libraries as they are more prevalent in the systems compared to the
other smell in each correlated pair. Similarly, we drop the variable code churn from the model
as we found it to be highly correlated (0.99) with the file size (LOC). We chose Spearman’s rank
correlation as it is non-parametric and does not require data to be normally distributed.

We rank the independent variables based on the logistic regression model coefficients (log odds)
and the corresponding p-values. Table 10 presents the model coefficients and their ranking for each
system. The coefficients with significant p-values (<0.01) are presented in boldface. To evaluate the
relationships of individual types of smells with bug-proneness, we summarize the data from Table
10 into Table 11 to identify the top five smell types that are more related to bugs. For each smell
type, Table 11 presents the percentage of systems where the smell type has positive log odds, the
number of times the smell type is in the top five in the ranking of positive log odds, and the number
of systems where the log odds are statistically significant. For each smell, we consider only the
system where we are able to calculate the model coefficients and thus we exclude the systems where
we do not get the coefficient values due to singularities. For the smell Too Much Clustering for
example, in Table 10, for eight (8) out of nine (9) systems (i.e., except Jpype) we have values for
model coefficients. Out of these eight systems, for five (5) systems (Conscrypt, Javacpp, Rocksdb,
VLC-android, and Zstd-jni i.e., 5/8 (62.5%) times) Too Much Clustering has positive values for log
odds. All of these five times (systems) the log odds were ranked in the top five, having significant
p-values in four systems (Conscrypt, Javacpp, VLC-android, and Zstd-jni). For all smell types in
Table 10, we present such summary in Table 11. We then report the top five smell types (underlined
in Table 11) based on the percentage of systems in which the smell have positive log odds, number
of times the positive log odds were in the top five ranking, and the number of systems in which
the log odds have significant p-values respectively as shown in Table 11. For the control variables
LOC and the number of previous bug-fix, we observed positive log odds in most of the systems.
So, these coefficients for the control factors agree with the known impacts of these two variables
on fault-proneness. We also observed negative log odds for the smells from the logistic regression
models for the studied systems. The negative regression coefficients might be interpreted as an
indication that the corresponding smells are negatively related to fault-proneness. However, this
scenario varies across the studied systems.

, Vol. 1, No. 1, Article . Publication date: October 2020.

34 Abidi et al.

Table 11. Fault-proneness of Different Types of Smells Based on Logistic Regression Analysis

Smell Types Number and Percentage of Systems
LO > 0 LO in Top 5 (LO>0 and p<0.01)

Excessive Inter-language Communication 25%(2/8) 2 0
Too Much Clustering 62.5%(5/8) 5 4
Too Much Scattering 100%(6/6) 6 3
Unused Method Declaration 37.5%(3/8) 2 1
Unused Method Implementation 25%(1/4) 1 1
Unused Parameters 66.6%(6/9) 5 4
Not Handling Exceptions 42.8%(3/7) 3 2
Not Securing Libraries 28.5%(2/7) 2 1
Hard Coding Libraries 75%(3/4) 3 2
Memory Management Mismatch 50%(2/4) 1 1
Local References Abuse 0%(0/5) 0 0
Excessive Objects NA NA NA
Not Caching Objects NA NA NA
LO = Log Odds of the corresponding smell from the logistic regression model.
NA = Corresponding Log odds are not available from the LR models due to singularities

Table 12. Fault-proneness of Different Types of Smells Based on Logistic Regression Model for All Systems

Smell Types Log Odds p-values
Excessive Inter-language Communication 2.985e-01 1.11e-07 (<0.01)
Too Much Clustering 4.262e+00 0.000898 (<0.01)
Too Much Scattering 8.359e+00 1.82e-15 (<0.01)
Unused Method Declaration 9.078e-01 < 2e-16 (<0.01)
Unused Method Implementation -1.255e+01 0.894915
Unused Parameters 5.695e-01 < 2e-16 (<0.01)
Not Handling Exceptions 3.248e+00 0.000217 (<0.01)
Not Securing Libraries -4.469e-01 0.813090
Hard Coding Libraries 1.841e+00 0.546194
Memory Management Mismatch -9.255e+00 0.998258
Local References Abuse -1.172e+01 0.999968
Excessive Objects NA NA
Not Caching Objects NA NA
NA = Corresponding Log odds are not available from the LR models due to singularities

As shown in Table 10, the log odds of the independent variables vary across the systems. In four of
the systems (Conscrypt, Javacpp, VLC-android, and Zstd-jni), we observe that the log odds for the
smells are statistically significant (<0.01). These four systems reject the hypothesis H4, meaning
that different smells have different impacts on fault-proneness. However, we cannot generalize it to
other systems to have a concrete conclusion. Thus, given the varying log odds of the smells from
our regression models for individual systems, we conclude that the relationships between different
types of multi-language smells and fault-proneness are system dependent.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 35

Given that we have limited evidence to draw a firm conclusion on the strength of the relationships
between different types of smells and fault-proneness, we focus on identifying smells that are
relatively more related to faults based on the ranking of the values of the log odds and their
significance. In Table 11, the smell type Too Much Clustering has positive log odds in 62.5% (5/8) of
the systems. Each time, log odds were among the top 5 and was statistically significant in three
systems. Similarly, Too Much Scattering, Unused Parameters, Hard Coding Libraries and Memory
Management Mismatch are among the top five smells with positive log odds in 100%(6/6), 66.6%(6/9),
75%(3/4), and 50%(2/4) systems, respectively. These smells are likely to have a strong relation with
fault-proneness. Besides, the smells Not Handling Exceptions, Unused Method Declaration and Not
Securing Libraries have significant positive log odds for 2 (Conscrypt, Zstd-jni), 1 (Javacpp), and 1
(Javacpp) system(s), respectively; indicating some degree of relation with fault-proneness. Excessive
Inter-language Communication and Local References Abuse which have no significant positive log
odds are less likely to be associated with faults.

We also build a single logistic regression model for all the systems combined to evaluate how the
findings from individual systems generalize. We presented the regression results for the smells in
Table 12. We observed that smells Excessive Inter-language Communication, Too Much Clustering, Too
Much Scattering, Unused Method Declaration, Unused Parameters, and Not Handling Exceptions have
positive log odds with significant p-values (<0.01). This is an indication that these smells have
statistically significant relationships with fault-proneness. This finding corroborates our findings
from the analysis of individual systems for most cases. However, we did not observe significant
relationships between multi-language smells and fault-proneness for the remaining smell types
(in the models for all systems combined). Now, if we consider positive log odds with significant
p-values in the logistic regression model for all systems combined (Table 12) and the percentage of
positive log odds for regression models for individual systems (Table 11), we observe that the smell
types Too Much Clustering, Too Much Scattering, Unused Parameters, Not Handling Exceptions, and
Hard Coding Libraries are the most related to fault-proneness. However, this relationship varies
with systems. One important point to note is the fact that smells suggested by our empirical results
to be more related to fault-proneness constitute roughly over 80% of the smells in the studied
systems (details in Table 6). This further shows that it is important to detect and remove these
smells from the systems as soon as possible.

To study the relationships betweenmulti-language smells and fault-proneness, we also investigate
the correlation (Spearman’s) between the number of smells of individual types in a file and the
number of bugs associated with the corresponding file. We observed that Not Using Relative
Path (0.48), Not Handling Exceptions (0.32), Excessive Inter-language Communication (0.30), Local
References Abuse (0.24), Hard Coding Libraries (0.19), and Too Much Clustering (0.18) are the top
smells based on the correlation with faults, although most of these and the remaining correlations
are weak. Also, we mentioned that Not Using Relative Path was dropped from our logistic regression
models because of its high correlation with Not Securing Libraries. So, we cannot draw a firm
conclusion on the impacts of smells on fault-proneness based on these correlation results.

To have better insights into the identified relationships between the different types of JNI smells
and bugs and to understand the bug-smell contexts in the studied systems, we further manually
investigated a random sample of commit messages associated with bugs. From analyzing these
commit messages, we found some commit messages clearly suggesting that some specific smells
are often related to bugs. For example, in the release 1.0.0.RC14 of Conscrypt, a commit message is
clearly specifying errors related to the code smell Unused Parameters (“Our Android build rules
generate errors for unused parameters. We cant enable the warnings in the external build rules because
BoringSSL has many unused parameters”). The same goes for Memory Management Mismatch, in
Realm, a commit message was discussing errors related to memory management “DeleteLocalRef

, Vol. 1, No. 1, Article . Publication date: October 2020.

36 Abidi et al.

when the ref is created in loop (#3366) Add wrapper class for JNI local reference to delete the local
ref after using it”. Another example from Conscrypt discussing bugs related to native memory
management “This fixes a memory leak in NativeCrypto_i2d_PKCS7. It never frees derBytes”. The
smell Not Handling Exceptions is also discussed as related to the bug 3482 in Realm (“Add cause to
RealmMigrationNeededException (#3482)”). VLC-android also presents bugs related to the smell
Not Handling Exceptions “rework exceptions throwing from jni”. Similarly, other commit messages
were also describing bugs related to Unused Method Declaration. “There were a bunch of exceptions
that are being thrown from JNI methods that aren’t currently declared”, and “Fix latent bug in unused
method” present examples extracted respectively from Conscrypt and Pljava. Thus, we see that our
identified smells are often related to bugs which highlight practical contexts and usability of our
findings.

We also analyzed some quality attributes of our models such as Null deviance, Residual deviance,
and Akaike’s Information Criterion (AIC) as presented in Table 10. We observe that there are larger
differences between null deviance and the residual deviance for the models of all the systems
indicating a good fit of the regression models. We observe lower values for AIC for most of the
regression models indicating the simplicity of the models with comparatively higher values for
Conscrypt, Javacpp, VLC-android, and Zstd-jni.

Summary of findings (RQ4): We conclude that although not always significant, there
exists a relation between types of smells and the fault-proneness. The relationship is not
consistent for all types of smell and across all the systems. Smell types Too much Scattering,
Too Much Clustering, Unused Parameters, Hard Coding Libraries, and Not Handling Exceptions
are observed to be more related to faults compared to other smells, and thus should be
prioritized during maintenance.

4.5 RQ5: What are the activities that are more likely to introduce bugs in smelly files?
Since the risk of having bugs could differ from one activity to the other, we decided to investigate
what kind of activities once performed in smelly files could increase the risk of bug occurrences.
Having knowledge of risky activities developers and maintainers could reduce the risk of bugs
in smelly files. To study the activities that could introduce bugs in smelly files, we collected the
fault-inducing commits messages and performed a topic modeling, combining a mix of manual and
automatic approaches as described in Section 3.

Table 13 lists 12 activities that are more likely to introduce bugs in smelly files. For each activity
the table lists the systems from which the activity was extracted. For each activity, we also present
examples of keywords used to build the topic for that activity. For example, the activity memory
management, was extracted using a set of keywords including: buffer, memory, leak, flush, reference,
local, memtable from Rocksdb, Realm, Conscrypt, and Jpype. “Add more numbers to float-conversion
test, add new unit-test for float-conversion”, is an example of a commit message describing data
conversion activity when the bug was introduced, extracted from Java-smt. Another example of
commit message that introduced bugs extracted from Rocksdb: “Another change is to only use class
BlockContents for compressed block, and narrow the class Block to only be used for uncompressed
blocks, including blocks in compressed block cache”. This commit message is related to compression
activities. From Zstd-jni, the following commit messages “expose faster API to allow re-using of
dictionaries” refers to the usage of APIs. Those activities were extracted from commit messages of
fault-inducing commits. Developers performed those activities in files containing occurrences of
multi-language design smells when the bug was introduced.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 37

Table 13. Activities Introducing Bugs in Smelly Files

No Activities Example of Keywords Systems
1 Compression tasks compression, decode, memory, blocks, encode, com-

paction, streaming, frames, block, dictionary.
Rocksdb, Zstd-jni

2 Data conversion parser, type, container, basic, declaration, write, invalid,
convert, string, coverage.

Rocksdb, Realm, Pljava,
Javacpp, Conscrypt, Java-
smt, Zstd-jni

3 Memory management buffer, messagesize, memory, leak, local, reference, flush,
memtable, allocation, garbage.

Rocksdb, Realm, Con-
scrypt, Pljava, Jpype,
Javacpp

4 Restructuring the code add, update, remove, code, reorder, native, move, public,
improve, change.

Rocksdb, VLC-android,
Conscrypt, Jpype, Pljava

5 Database management stored, db, database, persistence, key, data, visible, size,
file, timestamp.

Rocksdb, Pljava

6 API usage external, library, api, include, expose, public, integrate,
allow, streaming, wrapper.

VLC-android, Realm, Con-
scrypt, Rocksdb, Pljava,
Zstd-jni,Java-smt

7 Feature migration upgrade, support, migrate, integrate, create, legacy, sim-
plify, add, format, update.

Realm, Javacpp, Rocksdb,
Java-smt, Zstd-jni

8 Network management sslsocket, encrypt, socket, nativessl, token, hostname, pro-
tocol, platform, sslSession, activesession.

Conscrypt, Rocksdb

9 Exception management occur, handle, check, exception, throw, return, fix, pointer,
illegal, runtime.

Conscrypt, Javacpp, Jpype,
Java-smt

10 Threads management thread, pull, execution, reflect, client, transaction, monitor,
notify, mutex, log.

Pljava, Rocksdb, Realm

11 Performance management time, wrap, performance, execution-time, regression,
cache, shared, resources, bundle, increase.

Zstd-jni, Rocksdb

12 Compiler management compiler, resolve, failure, check, warnings, support,
JNI_ABORT, error, illegal, dynamic.

Jpype, Rocksdb

From analyzing the commit messages and topics of activities, we found that activities related to
data conversion, memory management, API usage, code restructuring, and exception management
are the most common activities that could increase the risk of bugs when performed in smelly files.
Activities related to the compiler management, threads management, and compression tasks could
also induce bugs in smelly files.
To understand why these activities seem to be risky, we decided to investigate further these

activities at the source code level. For example, zstd.java is a native class from Zstd-jni system. This
class contains 1351 lines of code with 75 native methods and exhibits the smell Too Much Clustering.
This class combines methods performing distinct responsibilities, i.e., compression, decompression,
computation, data access, and utility methods. As per commit messages identified as introducing
bugs, the developer was reordering the statics methods, adding JNI wrappers, and performing
compression tasks “Reorder the static methods, All compression first then all decompression
then the rest, inputs checking + utility methods”, “Add Java wrappers and C implementations
of compress/decompress using direct ByteBuffer”. This class contains two types of smells, Too
Much Clustering and Excessive Inter-language Communication. The nature of those two smells is
by definition adding complexity to the code by making the readability of such classes hard. Thus,
restructuring the code of a large native class could have increased the risk of introducing bugs.
Indeed, applying changes on multi-language code could bring some confusion if the developer is
not familiar with the components involved in the multi-language interaction. Similarly, activities

, Vol. 1, No. 1, Article . Publication date: October 2020.

38 Abidi et al.

related to compression are declared in Java side and mainly implemented in the C/C++ side
(jni_zstd.c). Developers should have knowledge of both implementations to correctly perform a
change, especially that this class contains Excessive Inter-language Communication between Java
and C/C++ when performing compression activities. Another example is illustrated by Listing 12.
It presents a function extracted from the C file jni_zdict.c from Zstd-jni system. A developer was
“adding support for legacy dictionary trainer” in this smelly function when the bug was introduced.
However, in the context of JNI, it is important to always perform checks to ensure that the native
execution was performed correctly. As described in Section 2.3, when checking JNI exceptions,
we should add a return statement just after throwing the excepting to interrupt the execution
flow and exit the method in case of errors. The ThrowNew() functions do not interrupt the control
flow of the native method. In case an error occurred when retrieving the jclass, the exception will
not be thrown in the JVM until the native method returns. Developers should be aware of how
to implement the exception in the context of JNI systems to avoid introducing bugs related to
mishandling JNI exceptions. Activities related to the conversion of types could also introduce bugs
as expressed by a commit message extracted from Javacpp ; i.e., “Provide ‘BytePointer’ with value
getters and setters for primitive types other than ‘byte’ to facilitate unaligned memory accesses”.
Another example of bugs related to the management of the memory is extracted from Pljava,

c source code file JNICalls.c, “Eliminate threadlock ops in string conversion”. Both of those files
exhibit the smell Memory Management Mismatch. Activities related to data and type conversion
could increase the risk of bug because when converting types from Java to C/C++, the conversion
will raise two categories of types; primitive types and reference types. Primitive types are simple
to convert, we usually add j in front of the type e.g., int become jint, float become jfloat, etc.
However, for the reference types i.e., Class, Object, String, developers should use the predefined
method to correctly perform the conversion. However, it happens that they forget to release the
memory after such conversion which could introduce additional bugs including memory leaks.
Listing 13 presents an example extracted from Pljava as introducing bugs. In this example, the
method GetObjectArrayElement is used to capture a Java array. However, the memory is not
released after usage as done in Listing 12. From the above examples, we conclude that some specific
types of activities are relatively more frequently associated with bugs, especially in the context of
multi-language design smells. Developers should be cautious while performing those activities.

Listing 12. Example of Bug in Smelly Method 1/2

/*
...
*/
jsize num_samples = (*env)->GetArrayLength(env, sampleSizes);

jint *sample_sizes_array = (*env)->GetIntArrayElements(env, sampleSizes, 0);
size_t *samples_sizes = malloc(sizeof(size_t) * num_samples);
if (!samples_sizes) {

jclass eClass = (*env)->FindClass(env, "Ljava/lang/OutOfMemoryError;");
(*env)->ThrowNew(env, eClass, "native heap");

}
for (int i = 0; i < num_samples; i++) {

samples_sizes[i] = sample_sizes_array[i];
}
(*env)->ReleaseIntArrayElements(env, sampleSizes, sample_sizes_array, 0);

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 39

Listing 13. Example of Bug in Smelly Method 2/2

/*
...
*/

jsize idx;
jboolean foundNull = JNI_FALSE;
BEGIN_JAVA
idx = (*env)->GetArrayLength(env, array);
while(--idx >= 0)
{ if((*env)->GetObjectArrayElement(env, array, idx) != 0)

continue;
foundNull = JNI_TRUE;
break;

}
END_JAVA
return foundNull;

}

Summary of findings (RQ5): Activities related to data conversion, memory management,
code restructuring, API usage, and exception management are the most common activities
that could increase the risk of bugs once performed in smelly files, and thus should be
performed carefully.

5 DISCUSSION
This section discusses the results reported in Section 4.

5.1 Multi-language Design Smells
Detection of Smells. We used srcML parser due to its ability to provide a single xml file combin-

ing source code files written in more than one programming language. Languages supported in the
current version of srcML include Java, C, C++, and C#.24 However, this could be extended to include
other programming languages [53]. The detection approach presents some limitations. The recall
and precision vary depending on the type of design smells and mainly on the naming convention
used to implement the JNI projects. For the smell Unused Method Declaration, we are missing some
occurrences due to the syntax used in the C implementation that is not completely following the
JNI naming convention (e.g., Pljava jobject pljava_DualState_key). For Local References Abuse, we
are not considering situations in which predefined methods could be used to limit the impact of
this design smell, i.e., PushLocalFrame25, and PopLocalFrame.26 These methods were excluded
because by a manual validation when defining the smells, we found that those methods do not
always prevent occurrences of the design smells and inclusion of those may result in false negatives.
Our detection approach also presents some limitations in the detection of Not Using Relative Path,
particularly in situations where the path could be retrieved from a variable or concatenation of

24https://www.srcml.org/about.html
25https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#PushLocalFrame
26https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#PopLocalFrame

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://www.srcml.org/about.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#PushLocalFrame
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#PopLocalFrame

40 Abidi et al.

strings. However, this was not captured as a common practice in the analyzed systems. We refined
our detection rules to favor the recall over precision, as was done for smells detection approaches for
mono-language systems [35, 54]. However, by refining some rules as explained earlier for the smell
Local References Abuse, and mainly due to some situations that are not coherent with the standard
implementation of JNI code, we ended up having on average a better precision. The same goes for
the smell Memory Management Mismatch. Indeed, we implemented a simple detection approach
that could be applied to detect the smell following the definition and rule presented in this paper.
Thus, this could not be generalized to all memory allocation issues. The detection approach relies
on rules specific to the JNI usage. Thus, other native methods that could be implemented without
considering JNI guidelines could lead to false positives and false negatives. To reduce threats to the
validity of our work, we manually verified instances of smells reported by our detection approach
on six open source projects along with our pilot project and measured the recall and precision of
our detection approach as described in Section 3.

Distribution of JNI Smells. From our results we found that most of the studied smells specific
to JNI systems are prevalent in the selected projects. Results from the studied systems reflect a
range from 10.18% of smelly files in Jpype system to 61.36% of smelly files in Zstd-jni. On average,
33.95% of the JNI files in the studied systems contain multi-language design smells. Multi-language
systems offer numerous benefits, but they also introduce additional challenges. Thus, it is expected
to have new design smells specific to such systems due to their heterogeneity. The prevalence of
multi-language smells in the selected projects highlights the need for empirical evaluation targeting
the analysis of multi-language smells and also the study of their impact on software maintainability
and reliability. We also analyzed the persistence of these smells. Our results show that overall the
number of smells usually increases from one release to the other. Such systems usually involve
several developers working in the same team and who might not have a good understanding of the
architecture of the whole project. Thus, the number of smells may increase if no tools are available
to detect those smells and-or to propose refactored solutions.
We observed situations in which the number of smells could decrease from one release to the

next one. From investigating the commit message, we observed that some smells were refactored
from one release to the other. Most of them due to the side effect of other refactoring activities,
but also due to specific refactoring activities, e.g., removing Unused Parameters, unused methods,
implementing the handling of native exceptions, etc. This suggests that some developers might be
aware of the necessity to remove those smells. However, since no tools are available to automatically
detect such occurrences, it is hard for a developer to manually identify all the occurrences. However,
we plan in another study to investigate the developers’ perceptions and opinions about those smells
as well as their impacts on software quality.

Distribution of specific kinds of smells. We investigated in RQ2, if some specific smells are
more prevalent than others. We found that the smells are not equally distributed within the analyzed
projects. We also investigated their evolution over the studied releases. Our results show that the
studied smells either persist or even mostly increase in number from one release to another. We
observed some cases in which there was a decrease from one release to the other, and where smells
occurrences were intentionally removed (Rocksdb, Conscrypt) by refactoring. Those systems are
emerging respectively from Facebook and Google. In Realm, we also observed the awareness of
developers about the bad practice of not removing local references (commit message: “DeleteLocalRef
when the ref is created in loop (#3366) Add wrapper class for JNI local reference to delete the local ref
after using it”). This could explain the decrease of smells occurrences in some situations. However,
since no automatic tool is available, it could be really hard to identify all the occurrences, especially

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 41

since such systems usually include different teams, which could explain the increase and decrease
of multi-language design smells occurrences.
Our results show that Unused Parameters is one of the most frequent smells in the analyzed

projects. This could be explained by the nature of the smell. This smell is defined when an unneces-
sary variable is passed as a parameter from one language to another. Since multi-language systems
are emerging from the concept of combining heterogeneous components and they generally involve
different developers who might not be part of the same team, it could be a challenging task for
a developer working only on a sub-part of a project to clearly determine whether that specific
parameter is used by other components or not. Thus, developers will probably tend to opt for
keeping such parameters for safety concerns. The same goes for Too Much Scattering and Unused
Method Declaration, these smells are defined respectively by occurrences in the code of native
methods declarations that are no longer used, and separate and spread multi-language participants
without considering the concerns. The number of these smells seems to increase over the releases
as shown in Fig. 7. Under time pressure the developers might not take the risk to remove unused
code, especially since in the case of JNI systems, such code could be used in other components.
Similarly, the high distribution and increase of Too Much Scattering could be explained in situations
where several developers are involved in the same projects, bugs related to simultaneous files
changes may occur. When features are mixed together, a change to the behavior of one may cause
a bug in another feature. Thus, developers might try to avoid these breakages by introducing
scattered participants. Similarly, the design smell Not Securing Libraries is prevalent in the analyzed
systems. We believe that developers should pay more attention to this smell. Malicious code may
easily access such libraries. Occurrences of this smell can introduce vulnerabilities into the system,
especially JNI systems that have been reported by previous studies to be prone to vulnerabilities
[6, 10]. Several problems may occur due to the lack of security checking. An unauthorized code
may access and load the libraries without permission. This may have an adverse impact especially
in industrial projects that are usually developed for sale or are available for online use, or other
safety-critical systems.

5.2 Smells and Faults
Relation Between Smells and Faults. In RQ3, we analyzed the relation between smells and

fault-proneness. We used Fisher’s exact test and the odds ratios to check whether the proportion
of buggy files varies between two samples (with and without design smells). From our results,
we found that in general odds ratios are higher than one. This confirms previous insights from
mono-language studies in which researchers claimed that design smells could increase the risk
of faults [25, 55]. We cannot claim causation as we do not know whether such faults could have
been caused by other factors. Although, our results suggest that files with JNI systems are more
likely to be associated with faults than files without. In Zstd-jni, we found higher ORs than those of
other systems from 13.9285 to 37.7142; this could be explained by the nature of smells involved in
this system as reported in Table 6. Some types of smells could be more related to bugs than other
types. Out of all the 98 releases analyzed, we found eight releases with ORs less than one, however,
none of them was with a significant p-value. In Java-smt and Javacpp, p-values are not statistically
significant (higher than 0.05) in most releases.
From studying bug-fix commit messages, we observed that the impact is also smell-dependent.

Occurrences of some types of smells seem more related to bugs than others, which motivates us
to perform the RQ4. Some occurrences of smells related to bugs have been refactored from one
release to the next one. In many cases, we find a description in the commit message indicating
refactoring for removing specific smells that caused the bugs (commit message: e.g., “There were a
bunch of exceptions that are being thrown from JNI methods that aren’t currently declared”, “cleaning

, Vol. 1, No. 1, Article . Publication date: October 2020.

42 Abidi et al.

up JNI exceptions (#252)”, “removed a few unused JNI methods”). Mono-language smells have been
widely studied in the literature and were reported to negatively impact systems by making classes
more change-prone and fault-prone. Multi-language systems could introduce additional challenges
compared to mono-language systems. Those challenges are mainly related to the incompatibilities
of programming languages and the heterogeneity of components. Thus, the design smells occurring
on those systems are expected to increase the challenges related to the maintenance of these
systems. Even if some smells e.g., Unused Method Declaration, Unused Method Implementation could
not be directly related to bugs, they seem to increase the maintenance efforts because some of
them are intentionally removed by developers. Thus, we believe that developers should be cautious
about files with JNI smells, because they are more likely to be subject to faults and thus may
incur additional maintenance efforts. Developers should also pay attention to avoid introducing
occurrences of such design smells when dealing with JNI systems.

Relation between Specific Smells and Faults. Results from RQ4 show that some smells seem
more related to faults than others:Unused Parameters, TooMuch Clustering, TooMuch Scattering,Hard
Coding Libraries, and Not Handling Exceptions. The smell types Memory Management Mismatch and
Not Securing Libraries are also found to be related to bugs. We believe that files containing these
smells should be considered in priority for testing and-or refactoring. The smell Not Handling
Exceptions was previously reported as related to bugs [6, 56]. In fact, we discussed a bug related to
this smell early in Section 1. A bug related to this smell was reported in Conscrypt, developers were
not checking for Java exceptions after all JNI calls that might throw them. The management of
exceptions is not automatically ensured in all the programming languages. Incompatibility between
the programming languages may lead to bugs and challenges related to the conversion, management
of memory, and other mismatches between programming languages. In JNI projects, developers
should explicitly implement the exception handling flow. Similarly, bugs in files containing the
smells Unused Parameters and Too Much Clustering could be explained as the impacts of the noises
that these two smells could introduce. Indeed, unused code or huge files with JNI code could impact
code maintainability and the comprehension of JNI systems, which may lead to the introduction of
bugs. From our detection approach, we identified files containingmore than 200method declarations
that are not necessarily related in terms of responsibilities and that do not follow the principle of
separating the concerns. We believe that faults could be easily introduced in such files, especially
when dealing with JNI code; a developer might not be an expert on all the languages used and the
inter-language interfaces. Developers should be concerned about the types of smells that are more
likely to introduce bugs. The code containing these smells should be prioritized for testing and
refactoring.

5.3 Risky Activities
From RQ5, we found that activities related to data conversion, memory management, restructuring
the code, API usage, and exception management are among the activities that could increase the risk
of bugs when performed on smelly files. This is not surprising as several articles and developers’
blogs discussed bugs related to the management of the memory in JNI systems [6, 10]. Some of these
activities are directly related to design smells discussed in this paper, e.g., Memory Management
Mismatch, Local References Abuse. Developers who do not follow good practices to avoid such
design smells could perform activities that could increase the risk of future bugs in those files. In
the context of JNI systems, it is the developers’ responsibility to take care of the management of
memory because of the incompatibility between Java and C/C++. The same goes for data conversion
when using JNI. We should consider specific rules to convert and access data between Java and
C/C++. Primitive types could be easy to convert from Java to C/C++. However, reference types

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 43

are more complex and require additional knowledge on what kind of methods to use to apply a
proper conversion. Several studies also discussed issues related to exceptions in JNI context. Unlike
Java, C/C++ does not support the automatic handling of exceptions. Developers could introduce
bugs if they do not have enough knowledge about how to implement the exception handling flow
in JNI context. Such incompatibility between programming languages could introduce bugs and
other maintenance challenges including checking exceptions, buffer overflows, and memory leaks
[30]. Following formal guidelines and being aware of the practices to follow could help to improve
the quality of those systems [6, 10, 12, 13]. We also noticed that in some systems, developers
started paying more attention to this smell to avoid bugs related to the management of exceptions
Conscrypt: “This works towards issue #258. So the exception can be routed out properly, this moves
the SSL_get0_peer_certificates call to after doHandshake completes in ConscryptFileDescriptorSocket”.
Another example from Realm, developers started paying more attention to the smell Local References
Abuse “DeleteLocalRef when the ref is created in a loop (#3366) Add wrapper class for JNI local reference
to delete the local ref after using it”. We believe that further investigations should be performed to
better understand the reasons for bug introduction in the presence of this smell.

5.4 Implications of the Findings
Based on our results we formulate some recommendations and highlight the implications of our
findings that could help not only researchers but also developers and anyone considering using
more than one programming language in a software system:

Our main goal was to investigate the existence of multi-language design smells and their impact
on software quality. We found that multi-language code smells frequently occur within the selected
projects and that they may increase the risk of bugs occurrence. Our results also highlight that the
frequency and impact differ from one smell to the other. We also studied the activities that could
introduce bugs once performed in smelly files.

Some of the implications of this study could be derived directly from the outcome of our research
questions. First, researchers could find interest in studying why and how some specific types of
smells are more frequent than others and the reasons behind their increase over time. They could
also investigate the reasons why some specific types of smells are more related to bugs than others.
The same goes for the activities, they could investigate further reasons behind the introduction of
bugs when those specific activities are performed. They could also explore the existence of other
activities that could introduce bugs. Second, practitioners could also take advantage of the outcome
of this paper to reduce the maintenance cost of multi-language systems. In fact, most of the smells
discussed in this paper (even those that are not always related to bugs) could introduce additional
challenges and increase the effort of maintenance activities. Having knowledge of their existence
and the potential impact could help to improve the quality of multi-language systems, and avoid their
introduction in systems during evolution activities. In fact, as reported earlier, we found multiple
commit messages in which developers explicitly mentioned issues caused by the occurrence of a
smell studied in this paper. Studying each type of smell separately also allowed us to capture their
impact individually. The insights from this study could help developers to prioritize multi-language
smells for maintenance and refactoring activities. The same goes for the activities introducing
bugs. Being aware of those activities could help developers avoid issues when performing them.
Finally, the catalog of design smells studied in this paper is not exhaustive and presents only a
small sample of possible multi-language smells and practices. Therefore, researchers and developers
could further investigate smells and practices in multi-language software development. Our focus
in this paper was on the JNI systems, and the researchers could also investigate other combination
of programming languages. Additionally, they can also examine the impact of design smells on
other quality attributes.

, Vol. 1, No. 1, Article . Publication date: October 2020.

44 Abidi et al.

We recommend that developers pay more attention to the design patterns and design smells
discussed in the literature that could be applied to the context of multi-language systems. Our
results highlight the need for more empirical studies on the impact of multi-language smells on
maintainability and program comprehension. We recommend to developers to be cautious when
editing files containing design smells Unused Parameters, To Much Clustering, Too much Scattering,
Not Handling Exception, Hard Coding Libraries since their occurrence seems to increase the risk of
fault introduction.

6 THREATS TO VALIDITY
In this section, we shed light on some potential threats to the validity of our methodology and
findings following the guidelines for empirical studies [57].

Threats to Construct Validity. These threats concern the relation between the theory and the
observation. In this study, these threats are mainly due to measurement errors. Most of the studied
projects rely on Github issues to report bugs. Therefore, we identified fault-fixing commits by
mining the Github commit logs using a set of keywords extracted from the literature [40, 48, 58].
We used a set of keywords similar to those previously used in studies focusing on bug prediction.
However, this technique may not capture all the commits related to fault-fixing if the commit
messages were not representative enough of the developer’s intention or were not containing any
of those keywords. Nevertheless, this methodology was successfully used in multiple previous
empirical studies [34, 36, 47, 58]. Moreover, in [59], the authors report that this technique can
achieve a precision of 87.3% and a recall of 78.2%. Another threat to construct validity is related to
the accuracy of the SZZ heuristic used to identify fault-inducing commits. Although this heuristic
does not achieve a 100% accuracy, it has been successfully employed and reported to achieve good
results in multiple empirical studies from the literature [60–62]. We also did a manual validation of
the bug inducing commits as described in Section 3.3.2 by inspecting the changes of a small sample
of bug inducing commits. For our smell detection approach, we applied simple rules. We adapted
our detection approach to ensure a balanced trade-off between the precision and the recall. For
some smells, e.g., Memory Management Mismatch, we considered specific situations in which the
smell occurs following simple rules and the definition presented earlier in Section 2.3. Thus, this is
not currently covering all possible issues related to memory management. However, the approach
could be extended to include other contexts and types of memory issues following other rules.
When analyzing the smelliness of files that experienced bugs, we considered the whole file as

participating in the design smell. Hence, the smell present in the file could be in different code
lines than the bug. There is a similar threat in our analysis of the activities introducing bugs. We
rely on commit messages provided by developers to identify the activities. We are aware that in
some cases, developers might not have provided all the details of the activities performed or might
have used some abbreviations. However, we mitigated this threat by combining both manual and
automatic approaches to capture the possible activities that were performed. We are aware that the
retrieved topics may not be 100% accurate. However, we followed the coding methodology applied
in previous studies [63, 64] and two of the authors manually validated a subset of the commit
messages. Through the manual analysis, we found that some commit messages describe more than
one activity in the same commit (e.g., Commit extracted from Zstd-jni: “Align the JNI names with the
new streaming API, Move to the new streaming API, Use the ZBUFF based streaming compression”)
while they assigned by the automatic approach to a single category. Although, the category to
which they are assigned is based on the frequencies of the related keywords. We mitigated this
threat by performing a manual validation over 500 commit messages. We also investigated some
examples of activities at the source code level in the smelly code as described in Section 4.5. The

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 45

list of the activities may not be exhaustive and do not present a 100% recall and precision. However,
in this paper we are reporting our observation on the activities that once performed in smelly files
could introduce bugs without any empirical comparison of the risk introduced by each activity.
However, we consider this as our future work in which we plan to perform a full manual validation
approach to capture individual activities and the risk of introducing bugs related to each of them.

Threats to Internal Validity. We do not claim causation and only relate the presence of multi-
language design smells with the occurrences of faults. We report our observations based on
empirical results and explain these observations with manually analyzed examples from the studied
systems to better contextualize our findings. We are aware that smells can depend on each other
and we select the subset of non-correlated smells while building the logistic regression models.
However, the variations in the distribution of smells, and some smells being very infrequent can
have negative impacts on the regression models. As our model for each system considers all releases
of a particular system than individual releases separately, it helps compensate for the infrequent
classes by boosting the per-class data size. Our study is an internal validation of multi-language
design smells that we previously defined and cataloged. Thus, this may present a threat to validity.
However, this threat was mitigated by publishing our catalog in a pattern conference. The paper
went through rounds of a shepherding process. In this process, an expert on patterns provided
three rounds of meaningful comments to refine and improve the patterns. The catalog then went
through the writers’ workshop process, in which five researchers from the pattern community had
two weeks before the writers’ session to carefully read the paper and provide detailed comments for
each defined smell. The catalog was then discussed during three sessions of two hours each. During
these sessions, each smell was examined in detail along with their definition and concrete examples.
The conference chair also provided additional comments to validate the catalog. In addition, the
results of this paper have shown that the studied smells are related to bugs. From the commit
messages, we also found that some smells were explicitly discussed by developers who contributed
in the smelly files. For example, one developer discussed exception handling as “There were a bunch
of exceptions that are being thrown from JNI methods that aren’t currently declared”. Therefore, we
believe that the studied smells should be considered with caution by developers since they may
hinder the software maintenance and may lead to bugs.

Threats to External Validity. These threats concern the possibility to generalize our results.
We studied nine JNI open source projects with different sizes and domains of application. We
focused on the combination of Java and C/C++ programming languages. Nevertheless, further
validation of a larger number of systems with other sets of languages would give more opportunities
to generalize the results. We studied a particular yet representative subset of multi-language design
smells. Future works should consider analyzing other sets of design smells.

Threats to Conclusion Validity. These threats are related to the relationship between the
treatment and the outcome. We were careful to take into account the assumptions of each statistical
test. We mainly used non-parametric tests that do not require any assumption about the data set
distribution.

Threats to Reliability Validity. We mitigate the threats by providing all the details needed
to replicate our study in section 3. We analyzed open source projects hosted in GitHub. We also
provide an online access to all the data and scripts used to conduct this study.21

7 RELATEDWORK
We now discuss the literature related to this work.

, Vol. 1, No. 1, Article . Publication date: October 2020.

46 Abidi et al.

7.1 Multi-language Systems
Several studies in the literature discussed multi-language systems. One of the very first studies,
if not the first, was by Linos et al. [65]. They presented PolyCARE, a tool that facilitates the
comprehension and re-engineering of complex multi-language systems. PolyCARE seems to be the
first tool with an explicit focus on multi-language systems. They reported that the combination
of programming languages and paradigms increases the complexity of program comprehension.
Kullbach et al. [66] also studied program comprehension for multi-language systems. They claimed
that program understanding for multi-language systems presents an essential activity during
software maintenance and that it provides a large potential for improving the efficiency of software
development and maintenance activities. Linos et al. [1] later argued that no attention has been
paid to the issue of measuring multi-language systems’ impact on program comprehension and
maintenance. They proposed Multi-language Tool (MT); a tool for understanding and managing
multi-language programming dependencies. Kontogiannis et al. [2] stimulated discussion around
key issues related to the comprehension, reengineering, andmaintenance of multi-language systems.
They argued that creating dedicated multi-language systems, methods, and tools to support such
systems is expected to have an impact on the software maintenance process which is not yet
known. Kochhar et al. [3] investigated the impact on software quality of using several programming
languages. They reported that the use of multi-programming languages significantly increases bug
proneness. They claimed that design patterns and anti-patterns were present in multi-language
systems and suggested that researchers study them thoroughly. Kondoh et al. [30] presented four
kinds of common JNI mistakes made by developers. They proposed BEAM, a static-analysis tool,
that uses a typestate analysis, to find bad coding practice pertaining to error checking, virtual
machine resources, invalid local references, and JNI methods in critical code sections. Tan et al. [10]
studied JNI usages in the source code of part of JDK v1.6. They examined a range of bug patterns
in the native code and identified six bugs. The authors proposed static and dynamic algorithms to
prevent these bugs. Li and Tan [29] highlighted the risks caused by the exception mechanisms in
Java, which can lead to failures in JNI implementation functions and affect security. They defined a
pattern of mishandled JNI exceptions.

7.2 Impacts of Patterns and Smells
Several studies in the literature have studied the impact of design smells on software quality but
mainly for mono-language systems.
Khomh et al. [25] analyzed nine releases of Azureus and 13 releases of Eclipse to investigate if

the classes with occurrences of design smells are more change-prone than classes without those
occurrences. They concluded that the classes with occurrences of design smells are more likely
to be the subject of changes than classes without those occurrences. Olbrich et al. [67] proposed
an approach that analyses the evolution of design smells and study their impact on the frequency
and size of changes. They study two design smells: God Class and Shotgun Surgery. They used
an automated approach based on detection strategies to detect the occurrences of design smells.
They identified different phases in the cycle of design smells evolution during the different phases
of the system development. They also found that components infected by design smells exhibit
different behavior. Abbes et al. [68] investigated the impact of occurrences of anti-patterns in
the developers’ understandability of systems while performing comprehension and maintenance
tasks. They conducted three experiments to collect data about the performance of developers and
study the impact of Blob and Spaghetti Code anti-patterns and their combinations. They concluded
that the occurrence of one anti-pattern does not significantly impacts comprehension while the
combination of the two anti-patterns negatively impact program comprehension. This finding

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 47

was corroborated by Politowski et al. [69]. Linares et al. [70] studied the potential relationship
between the occurrence of design smells and quality attributes as well as the possible relation
between design smells and application domains. They analyzed 1,343 Java Mobile applications in
13 different application domains. They concluded that anti-patterns negatively impact software
metrics in Java Mobile applications, in particular, fault-proneness. They observed that there is
a difference in the metric values between classes containing occurrences of smells and classes
without smells. They also found that some smells are more frequently present in a domain of
application while other smells are more present in other domains. Soh et al. [27] performed a study
with six developers, three maintenance tasks, and four equivalent functions in Java. They used the
Eclipse Mimec plugin and Thinkaloud sessions to analyze the effort spent by different developers
when performing different maintenance activities (editing, reading, navigating, searching, static
navigation, executing, and other activities). They concluded that design smells differently impact
the effort needed to perform the different activities. They also found that the effort needed for
reading, navigating, and editing is affected by three smells: “Feature Envy”, “God Class”, and “ISP
Violation”.

7.3 Patterns and Smells Detection Approaches
Van Emden et al. [71] proposed the JCosmo tool that supports the visualization of the code layout
and design defects locations. They used primitives and rules to detect occurrences of anti-patterns
and code smells while parsing the source code into an abstract model. Marinescu et al. [72]
proposed an approach for design defects detection based on detection strategies. The approach
captures deviations from good design principles and heuristics to help developers and maintainers
in the detection of design problems. Lanza et al. [73] presented the platform iPlasma for software
modeling and analysis of object oriented software systems to detect occurrences of design defects.
The platform applies rules based on metrics from C++ or Java code. Moha et al. [74] introduced
DECOR which detects design defects in Java programs. DECOR is based on a domain-specific
language that generates the design defect detection algorithms. Khomh et al. [75] proposed a
Bayesian approach to detect occurrences of design defects by converting the detection rules of
DECOR into a probabilistic model. Their proposed approach has two main benefits over DECOR:
(i) it can work with missing data and (ii) it can be tuned with analysts’ knowledge. Later on, they
extended this Bayesian approach as BDTEX [76], a Goal Question Metric (GQM) based approach
to build Bayesian Belief Networks (BBNs) from the definitions of anti-patterns. They assessed
the performance of BDTEX on two open-source systems and found that it generally outperforms
DECOR when detecting Blob, Functional Decomposition, and Spaghetti code anti-patterns.
Kessentini et al. [77] proposed an automated approach to detect and correct design defects.

The proposed approach automatically finds detection rules and proposes correction solutions
in term of combinations of refactoring operations. Rasool et al. [78] proposed an approach to
detect occurrences of code smells that supports multiple programming languages. They argued
that most of the existing detection techniques for code smells focused only on Java language and
that the detection of code smells considering other programming languages is still limited. They
used SQL queries and regular expressions to detect code smells occurrences from Java and C#
programming languages. In their approach, the user should have knowledge about the internal
architecture of the database model to use the SQL queries and regular expressions. In addition,
each language needs a specific regular expression. Fontana et al. [79] conducted a study applying
machine learning techniques for smell detection. They empirically created a benchmark for 16
machine learning algorithms to detect four types of code smells. The analysis was performed on
74 projects belonging to the Qualitas Corpus dataset. They found that J48 and Random Forest
classifiers attain the highest accuracy. Liu et al. [80] proposed a smell detection approach based on

, Vol. 1, No. 1, Article . Publication date: October 2020.

48 Abidi et al.

Deep Learning to detect Feature Envy. The proposed approach relies on textual features and code
metrics. It relies on deep neural networks to extract textual features. Barbez et al. [81] proposed a
machine learning based method SMAD that combines several code smells detection approaches
based on their detection rules. The core of their approach is to extract metrics based on existing
approaches and use those metrics as features to train the classifier for smell detection. The proposed
approach supports the detection of the smells of type God Class and Feature envy. Their approach
outperforms other existing methods in terms of recall and Matthews Correlation Coefficient (MCC).
Palomba et al. [82] proposed TACO, an approach that relies on textual information to detect
code smells at different levels of granularity. They evaluated their approach on ten open source
projects and found that the proposed approach outperforms existing approaches. While there are
some studies in the literature that document the good and bad practices related to multi-language
systems,[7, 8, 10, 56, 83] to the best of our knowledge, this is the first study that automatically
detects occurrences of multi-language design smells in the context of JNI systems and evaluates their
impact on software fault-proneness. Other studies in the literature are focusing on the detection
and analysis of design smells in mono-language systems.

8 CONCLUSION
In this paper, we present an approach to detect multi-language design smells and empirically
evaluate the impacts of these design smells on fault-proneness. We performed our empirical study
on 98 releases of nine open source JNI systems. Those systems provide a great variety of services to
numerous different types of users. They introduce several advantages, however, as the number of
languages increases so does the maintenance challenges of these systems. Despite the importance
and increasing popularity of multi-language systems, studying the prevalence and impact of patterns
and smells within these systems is still under-investigated. In this paper, we studied the impact
of multi-language design smells on the software fault-proneness. We investigated the prevalence
and impact of 15 design smells on fault-proneness. We showed that the design smells are prevalent
in the selected projects and persist across the releases. Some types of smells are more prevalent
than others. Our results suggest that files with JNI smells are more likely to be subject of bugs
than files without those smells. We also report that some specific smells, are more likely to be
of a concern than others, i.e., Unused Parameters, Too Much Scattering, Too Much Clustering, Hard
Coding Libraries, and Not Handling Exceptions. These smells seem more related to faults, thus we
suggest that practitioners consider them in priority for testing and-or refactoring. This empirical
study supports, within the limits of its threats to validity, the conjecture that multi-language design
smells are prevalent in the selected projects and that similar to mono-language smells, JNI smells
may have a negative impact on software reliability. From analyzing fault-inducing commits we
found that data conversion, memory management, code restructuring, API usage, and exception
management activities could increase the risk of bug introduction when performed on smelly files.
We believe that the results of this study could help not only researchers but also practitioners
involved in building software systems using more than one programming language. Our future
work includes (i) replicating this study with a larger number of systems for further generalization
of our results; (ii) studying the impact of design smells on change-proneness, (iii) investigating the
occurrences of other patterns and defects related to multi-language systems.

REFERENCES
[1] P. K. Linos, Z.-h. Chen, S. Berrier, and B. O’Rourke, “A tool for understanding multi-language program dependencies,”

in Program Comprehension, 2003. 11th IEEE International Workshop on. IEEE, 2003, pp. 64–72.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 49

[2] K. Kontogiannis, P. Linos, and K. Wong, “Comprehension and maintenance of large-scale multi-language software
applications,” in Software Maintenance, 2006. ICSM’06. 22nd IEEE International Conference on. IEEE, 2006, pp. 497–500.

[3] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple programming languages and code quality,” in
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), vol. 1. IEEE, 2016,
pp. 563–573.

[4] T. C. Jones, Estimating software costs. McGraw-Hill, Inc., 1998.
[5] J. Matthews and R. B. Findler, “Operational semantics for multi-language programs,” ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 31, no. 3, p. 12, 2009.
[6] B. Lee, M. Hirzel, R. Grimm, and K. S. McKinley, “Debug all your code: Portable mixed-environment debugging,”

SIGPLAN Not., vol. 44, no. 10, pp. 207–226, Oct. 2009.
[7] M. Goedicke, G. Neumann, and U. Zdun, “Object system layer,” 5th European Conference on Pattern Languages of

Programms (EuroPLoP ’2000), 2000.
[8] M. Goedicke and U. Zdun, “Piecemeal legacy migrating with an architectural pattern language: A case study,” Journal

of Software Maintenance and Evolution: Research and Practice, vol. 14, no. 1, pp. 1–30, 2002.
[9] A. Neitsch, K. Wong, and M. W. Godfrey, “Build system issues in multilanguage software,” in Software Maintenance

(ICSM), 2012 28th IEEE International Conference on. IEEE, 2012, pp. 140–149.
[10] G. Tan and J. Croft, “An empirical security study of the native code in the jdk,” in Proceedings of the 17th Conference on

Security Symposium, ser. SS’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 365–377.
[11] M. Abidi, M. Grichi, and F. Khomh, “Behind the scenes: developers’ perception of multi-language practices,” in

Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering. IBM Corp.,
2019, pp. 72–81.

[12] M. Abidi, F. Khomh, and Y.-G. Guéhéneuc, “Anti-patterns for multi-language systems,” in Proceedings of the 24th
European Conference on Pattern Languages of Programs. ACM, 2019, p. 42.

[13] M. Abidi, M. Grichi, F. Khomh, and Y.-G. Guéhéneuc, “Code smells for multi-language systems,” in Proceedings of the
24th European Conference on Pattern Languages of Programs. ACM, 2019, p. 12.

[14] F. Tomassetti and M. Torchiano, “An empirical assessment of polyglot-ism in github,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering, ser. EASE ’14. New York, NY, USA:
ACM, 2014, pp. 17:1–17:4.

[15] R.-H. Pfeiffer and A. Wąsowski, “Texmo: A multi-language development environment,” in Proceedings of the 8th
European Conference on Modelling Foundations and Applications, ser. ECMFA’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 178–193.

[16] Z. Mushtaq and G. Rasool, “Multilingual source code analysis: State of the art and challenges,” in 2015 International
Conference on Open Source Systems Technologies (ICOSST), Dec 2015, pp. 170–175.

[17] S. Liang, Java Native Interface: Programmer’s Guide and Reference, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

[18] J. Hunt, Java for Practitioners: An Introduction and Reference to Java and Object Orientation, 1st ed. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1999.

[19] C. Alexander, S. Ishikawa, M. Silverstein, J. R. i Ramió, M. Jacobson, and I. Fiksdahl-King, A pattern language. Gustavo
Gili, 1977.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-oriented Software. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[21] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray, AntiPatterns: refactoring software, architectures, and
projects in crisis. John Wiley & Sons, Inc., 1998.

[22] M. Fowler and K. Beck, Refactoring: improving the design of existing code. Addison-Wesley Professional, 1999.
[23] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of Systems and Software, vol. 138, pp. 158–173, 2018.
[24] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: a review of current knowledge,” Journal of Software Maintenance

and Evolution: research and practice, vol. 23, no. 3, pp. 179–202, 2011.
[25] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study of the impact of code smells on software

change-proneness,” in Reverse Engineering, 2009. WCRE’09. 16th Working Conference on. IEEE, 2009, pp. 75–84.
[26] D. Romano, P. Raila, M. Pinzger, and F. Khomh, “Analyzing the impact of antipatterns on change-proneness using

fine-grained source code changes,” in Reverse Engineering (WCRE), 2012 19th Working Conference on. IEEE, 2012, pp.
437–446.

[27] Z. Soh, A. Yamashita, F. Khomh, and Y.-G. Guéhéneuc, “Do code smells impact the effort of different maintenance
programming activities?” in 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1. IEEE, 2016, pp. 393–402.

[28] A. Yamashita and L. Moonen, “Do developers care about code smells? an exploratory survey,” in 2013 20th Working
Conference on Reverse Engineering (WCRE). IEEE, 2013, pp. 242–251.

, Vol. 1, No. 1, Article . Publication date: October 2020.

50 Abidi et al.

[29] S. Li and G. Tan, “Finding bugs in exceptional situations of jni programs,” in Proceedings of the 16th ACM Conference on
Computer and Communications Security, ser. CCS ’09. New York, NY, USA: ACM, 2009, pp. 442–452.

[30] G. Kondoh and T. Onodera, “Finding bugs in java native interface programs,” in Proceedings of the 2008 International
Symposium on Software Testing and Analysis, ser. ISSTA ’08. New York, NY, USA: ACM, 2008, pp. 109–118.

[31] F. Long, D. Mohindra, R. C. Seacord, D. F. Sutherland, and D. Svoboda, Java coding guidelines: 75 recommendations for
reliable and secure programs. Addison-Wesley, 2013.

[32] M. Lippert and S. Roock, Refactoring in large software projects: performing complex restructurings successfully. John
Wiley & Sons, 2006.

[33] F. A. Fontana, P. Braione, and M. Zanoni, “Automatic detection of bad smells in code: An experimental assessment.”
Journal of Object Technology, vol. 11, no. 2, pp. 5–1, 2012.

[34] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory study of the impact of antipatterns on
class change-and fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp. 243–275, 2012.

[35] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A method for the specification and detection of
code and design smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36, 2009.

[36] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol, “An empirical study of code smells in javascript projects,” in 2017
IEEE 24th international conference on software analysis, evolution and reengineering (SANER). IEEE, 2017, pp. 294–305.

[37] G. Gottlob, C. Koch, and R. Pichler, “Efficient algorithms for processing xpath queries,” ACM Transactions on Database
Systems (TODS), vol. 30, no. 2, pp. 444–491, 2005.

[38] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework for mining software repositories,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM, 2018, pp. 908–911.

[39] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4,
pp. 1–5, May 2005. [Online]. Available: http://doi.acm.org/10.1145/1082983.1083147

[40] A. Mockus and L. G. Votta, “Identifying reasons for software changes using historic databases.” in icsm, 2000, pp.
120–130.

[41] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do they really smell bad? a study on developers’
perception of bad code smells,” in 2014 IEEE International Conference on Software Maintenance and Evolution. IEEE,
2014, pp. 101–110.

[42] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli, “When testing meets code review: Why and how
developers review tests,” in 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE, 2018,
pp. 677–687.

[43] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia, “The scent of a smell: An extensive comparison
between textual and structural smells,” IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 977–1000, 2017.

[44] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/CRC, 2003.
[45] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented metrics on open source software for fault

prediction,” IEEE Transactions on Software engineering, vol. 31, no. 10, pp. 897–910, 2005.
[46] A. G. Koru, K. El Emam, D. Zhang, H. Liu, and D. Mathew, “Theory of relative defect proneness,” Empirical Software

Engineering, vol. 13, no. 5, p. 473, 2008.
[47] G. M. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, and Y. Zou, “Studying the impact of clones on software

defects,” in 2010 17th Working Conference on Reverse Engineering. IEEE, 2010, pp. 13–21.
[48] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of programming languages and code quality in

github,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 2014, pp. 155–165.

[49] A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and D. Lo, “Cataloging github repositories,” in Proceedings of the 21st
International Conference on Evaluation and Assessment in Software Engineering. ACM, 2017, pp. 314–319.

[50] D. Blei, L. Carin, and D. Dunson, “Probabilistic topic models: A focus on graphical model design and applications to
document and image analysis,” IEEE signal processing magazine, vol. 27, no. 6, p. 55, 2010.

[51] T.-H. Chen, S. W. Thomas, M. Nagappan, and A. E. Hassan, “Explaining software defects using topic models,” in 2012
9th IEEE Working Conference on Mining Software Repositories (MSR). IEEE, 2012, pp. 189–198.

[52] M. F. Porter, “Snowball: A language for stemming algorithms,” 2001.
[53] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcml: An infrastructure for the exploration, analysis, and manipulation

of source code: A tool demonstration,” in 2013 IEEE International Conference on Software Maintenance. IEEE, 2013, pp.
516–519.

[54] Y.-G. Guéhéneuc and G. Antoniol, “Demima: A multilayered approach for design pattern identification,” IEEE Transac-
tions on Software Engineering, vol. 34, pp. 667–684, 2008.

[55] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, and F. Khomh, “Mining the relationship between anti-patterns dependencies and
fault-proneness,” in 2013 20th Working Conference on Reverse Engineering (WCRE). IEEE, 2013, pp. 351–360.

, Vol. 1, No. 1, Article . Publication date: October 2020.

http://doi.acm.org/10.1145/1082983.1083147

Are Multi-language Design Smells Fault-prone? An Empirical Study 51

[56] G. Tan, S. Chakradhar, R. Srivaths, and R. D. Wang, “Safe Java Native Interface,” in In Proceedings of the 2006 IEEE
International Symposium on Secure Software Engineering, 2006, pp. 97–106.

[57] R. K. Yin, Applications of Case Study Research Second Edition (Applied Social Research Methods Series Volume 34). {Sage
Publications, Inc}, 2002.

[58] S. Zafar, M. Z. Malik, and G. S. Walia, “Towards standardizing and improving classification of bug-fix commits,” in 2019
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE, 2019, pp. 1–6.

[59] M. Castelluccio, L. An, and F. Khomh, “An empirical study of patch uplift in rapid release development pipelines,”
Empirical Software Engineering, vol. 24, no. 5, pp. 3008–3044, 2019. [Online]. Available: https://doi.org/10.1007/s10664-
018-9665-y

[60] G. Rodríguez-Pérez, A. Zaidman, A. Serebrenik, G. Robles, and J. M. González-Barahona, “What if a bug has a different
origin? making sense of bugs without an explicit bug introducing change,” in Proceedings of the 12th ACM/IEEE
international symposium on empirical software engineering and measurement, 2018, pp. 1–4.

[61] G. Rodríguez-Pérez, G. Robles, and J. M. González-Barahona, “Reproducibility and credibility in empirical software
engineering: A case study based on a systematic literature review of the use of the szz algorithm,” Information and
Software Technology, vol. 99, pp. 164–176, 2018.

[62] E. C. Neto, D. A. d. Costa, and U. Kulesza, “Revisiting and improving szz implementations,” in 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM), 2019, pp. 1–12.

[63] C. Treude and M. Wagner, “Predicting good configurations for github and stack overflow topic models,” in 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), 2019, pp. 84–95.

[64] H. Jelodar, Y. Wang, C. Yuan, X. Feng, X. Jiang, Y. Li, and L. Zhao, “Latent dirichlet allocation (lda) and topic modeling:
models, applications, a survey,” Multimedia Tools and Applications, vol. 78, no. 11, pp. 15 169–15 211, 2019.

[65] P. K. Linos, “Polycare: A tool for re-engineering multi-language program integrations,” in Proceedings of First IEEE
International Conference on Engineering of Complex Computer Systems. ICECCS’95. IEEE, 1995, pp. 338–341.

[66] B. Kullbach, A. Winter, P. Dahm, and J. Ebert, “Program comprehension in multi-language systems,” in Reverse
Engineering, 1998. Proceedings. Fifth Working Conference on. IEEE, 1998, pp. 135–143.

[67] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution and impact of code smells: A case study of two
open source systems,” in Proceedings of the 2009 3rd international symposium on empirical software engineering and
measurement. IEEE Computer Society, 2009, pp. 390–400.

[68] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical study of the impact of two antipatterns, blob and
spaghetti code, on program comprehension,” in Software maintenance and reengineering (CSMR), 2011 15th European
conference on. IEEE, 2011, pp. 181–190.

[69] C. Politowski, F. Khomh, S. Romano, G. Scanniello, F. Petrillo, Y.-G. Guéhéneuc, and A. Maiga, “A large scale
empirical study of the impact of spaghetti code and blob anti-patterns on program comprehension,” Information and
Software Technology, vol. 122, p. 106278, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0950584920300288

[70] M. Linares-Vásquez, S. Klock, C. McMillan, A. Sabané, D. Poshyvanyk, and Y.-G. Guéhéneuc, “Domain matters: bringing
further evidence of the relationships among anti-patterns, application domains, and quality-related metrics in java
mobile apps,” in Proceedings of the 22nd International Conference on Program Comprehension. ACM, 2014, pp. 232–243.

[71] E. Van Emden and L. Moonen, “Java quality assurance by detecting code smells,” in Reverse Engineering, 2002. Proceedings.
Ninth Working Conference on. IEEE, 2002, pp. 97–106.

[72] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design flaws,” in Software Maintenance, 2004.
Proceedings. 20th IEEE International Conference on. IEEE, 2004, pp. 350–359.

[73] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using software metrics to characterize, evaluate, and
improve the design of object-oriented systems. Springer Science & Business Media, 2007.

[74] N. Moha and Y.-G. Guéhéneuc, “P tidej and d ecor: identification of design patterns and design defects,” in Companion
to the 22nd ACM SIGPLAN conference on Object-oriented programming systems and applications companion. ACM,
2007, pp. 868–869.

[75] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian approach for the detection of code and design
smells,” in Quality Software, 2009. QSIC’09. 9th International Conference on. IEEE, 2009, pp. 305–314.

[76] ——, “Bdtex: A gqm-based bayesian approach for the detection of antipatterns,” Journal of Systems and Software, vol. 84,
no. 4, pp. 559–572, 2011.

[77] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, “Design defects detection and correction by
example,” in Program Comprehension (ICPC), 2011 IEEE 19th International Conference on. IEEE, 2011, pp. 81–90.

[78] G. Rasool and Z. Arshad, “A lightweight approach for detection of code smells,” Arabian Journal for Science and
Engineering, vol. 42, no. 2, pp. 483–506, 2017.

[79] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing and experimenting machine learning techniques
for code smell detection,” Empirical Software Engineering, vol. 21, no. 3, pp. 1143–1191, 2016.

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://doi.org/10.1007/s10664-018-9665-y
https://doi.org/10.1007/s10664-018-9665-y
http://www.sciencedirect.com/science/article/pii/S0950584920300288
http://www.sciencedirect.com/science/article/pii/S0950584920300288

52 Abidi et al.

[80] H. Liu, Z. Xu, and Y. Zou, “Deep learning based feature envy detection,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 385–396.

[81] A. Barbez, F. Khomh, and Y.-G. Guéhéneuc, “A machine-learning based ensemble method for anti-patterns detection,”
Journal of Systems and Software, vol. 161, p. 110486, 2020.

[82] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman, “A textual-based technique for smell detection,” in
2016 IEEE 24th International Conference on Program Comprehension (ICPC), 2016, pp. 1–10.

[83] M. Goedicke, G. Neumann, and U. Zdun, “Message redirector,” 6th European Conference on Pattern Languages of
Programms (EuroPLoP ’2001), 2001.

[84] S. Liang, The Java native interface: programmer’s guide and specification. Addison-Wesley Professional, 1999.

A APPENDIX
We present in the following the smell detection rules of the proposed approach. These rules are
applied on the srcML elements generated as an XML representation of a given project as described
in Section 3.3.1. Since the smells described in this paper are multi-language smells, the following
rules detect the occurrences of smells by using the XPath queries in the srcML representation of
the source code that contains Java and C/C++ native code.
(1) Rule 1: Not Handling Exceptions

(f (y) | f ∈ {GetObjectClass, FindClass,GetFieldID,GetStaticFieldID,

GetMethodID,GetStaticMethodID})

AND (isExceptionChecked(f (y)) = False OR ExceptionBlock(f (y)) = False)

Our detection rule for the smell Not Handling Exceptions is based on the existence of call
to specific JNI methods requiring an explicit management of the exception flow. The JNI
methods (e.g., FindClass) listed in the rule should have a control flow verification. The pa-
rameter y presents the Java object/class that is passed through a native call for a purpose
of usage by the C/C++ side. Here, isExceptionChecked allows to verify that there is an error
condition verification for those specific JNI methods, while ExceptionBlock checks if there is
an exception block implemented. This could be implemented using Throw() or ThrowNew()
or a return statement that exists in the method in case of errors.

(2) Rule 2: Assuming Safe Return Value
x := f (y)| f ∈ {FindClass,GetFieldID,GetStaticFieldID,GetMethodID,GetStaticMethodID}

AND isErrrorChecked(x) = False AND IsReturn(x) = True

This rule is quite similar to the previous rule. However, it considers the return value from
the native code. Indeed, the JNI methods called in this context are used for specific calculation
and the result then needs to be passed as a method return value to the Java side. Here,
x presents the native variable used within the method to receive the returned value and
perform computation on the Java side. isErrrorChecked(x) allows to verify if there is an error
condition verification applied to the variable x that will be returned back to the Java code
(IsReturn(x)=True). The use of the variable x as a return value by a native method without
any check of its correctness will introduce smell of type Assuming Safe Return Value given
other conditions hold.

(3) Rule 3: Not Securing Libraries

IsNative(Lib) = True AND loadedWithinAccessBlock (Lib) = False

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 53

This rule implies that in the Java code, a native library is used (IsNative(Lib) = True) and
that this library is loaded outside a block AccessController.doPrivileged without a try and
catch statements for safe handling of potential exceptions. This introduces smell of type Not
Securing Libraries.

(4) Rule 4: Hard Coding Libraries

IsNative(Lib)= True AND AccessiblePath(Lib)=False AND OsBlock(m) = True

This rule implies that in the Java code, a native library (Lib) is used in a native methodm
and that the path used for accessing that library is an absolute path while the code loading
the library depends on the operating systems. Here, the access to libraries is hard coded for
specific operating system rather than implementing a platform independent access mecha-
nism for libraries. This limits the portability of the code and may cause issues in accessing
the libraries for different operating systems.

(5) Rule 5: Not Using Relative Path
IsNative(Lib)= True AND RelativePath(Lib) = False
This rule implies that in the Java code, a native library is used. However, the native library
loaded from an absolute path and not from a relative path.

(6) Rule 6: Too Much Clustering
NbNativeMethods (C) >= MaxMethodsThreshold AND IsCalledOutside(m) = True
This rule detects cases where the total number of native methods (NbNativeMethods) within
any class C is equal to or higher than a specific threshold while those methodsm are used
by other classes and not only the one where they are declared (IsCalledOutside(m) = True).
In our case, we used the default values for the threshold eight. However, all the thresholds
could be easily adjusted as discussed earlier in Section 3.3.1.

(7) Rule 7: Too Much Scattering

NBNativeClass(P) >= MaxClassThreshold

AND (NbNativeMethods(C) < MaxMethodsThreshold AND C ∈ P)

The smell of type Too Much Scattering occurs when the total number of native classes in
any package P (NBNativeClass(P)) is more than a specific threshold (MaxClassThreshold)
for the number of maximum native classes. In addition, each of those native classes C con-
tains a total number of native methods (NbNativeMethods(C)) less than a specific threshold
(MaxMethodsThreshold) i.e., the class does not contain any smell of type Too Much Clustering.
We used default values for the threshold three for the minimum number of classes with each
a maximum of three native method each.

(8) Rule 8: Excessive Inter-language Communication
(NBNativeCalls(C,m) > MaxNbNativeCallsThreshold) OR
(NbNativeCalls(m(p)) > MaxNativeCallsParametersThreshold) OR
((NBNativeCalls (m) > MaxNbNativeCallsMethodsThreshold) AND IsCalledInLoop(m) = True)

The smell Excessive Inter-language Communication is detected based on the existence of at
least one of the three possible scenarios. First, in any class C the total number of calls to a

, Vol. 1, No. 1, Article . Publication date: October 2020.

54 Abidi et al.

particular native methodm exceeds the specified threshold (NBNativeCalls(C,m) > MaxNbNa-
tiveCallsThreshold). Second, the total number of calls to the native methodsm with the same
parameter p exceeds the specific threshold (MaxNativeCallsParametersThreshold). Third, the
total number of calls to a native methodm within a loop is more than the defined threshold
((MaxNbNativeCallsMethodsThreshold).

(9) Rule 9: Local References Abuse

(NbLocalRe f erence(f1(y)) > MaxLocalRe f erenceThreshold) AND
(f1(y) | f1 ∈ {GetObjectArrayElement,GetObjectArrayElement,NewLocalRe f ,AllocObject,

NewObject,NewObjectA,NewObjectV ,NewDirectByteBu f f er ,

ToRe f lectedMethod,ToRe f lectedField}) AND
(∄ f2(y) | f2 ∈ {DeleteLocalRe f , EnsureLocalCapacity})

The smell Local References Abuse is introduced when the total number of local references
(NbLocalReference(f1(y)) created inside a called method exceeds the defined threshold and
without any call to method DeleteLocalRef to free the local references or a call to method
EnsureLocalCapacity to inform the JVM that a larger number of local references is needed.

(10) Rule 10:Memory Management Mismatch

(mem ← f1(y) | f1 ∈ {GetStrinдChars,GetStrinдUTFChars,GetBooleanArrayElements,

GetByteArrayElements,GetCharArrayElements,GetShortArrayElements,

GetIntArrayElements,GetLonдArrayElements,GetFloatArrayElements,

GetDoubleArrayElements,GetPrimitiveArrayCritical,GetStrinдCritical})

AND (∄ f2(mem) | f2 ∈ {ReleaseGetStrinдChars,ReleaseGetStrinдUTFChars,

ReleaseGetBooleanArrayElements,ReleaseGetByteArrayElements,

ReleaseGetCharArrayElements,ReleaseGetShortArrayElements,

ReleaseGetIntArrayElements,ReleaseGetLonдArrayElements,

ReleaseGetFloatArrayElements,ReleaseGetDoubleArrayElements,

ReleaseGetPrimitiveArrayCritical,ReleaseGetStrinдCritical})

As discussed earlier, JNI offers predefined methods to manage the access of reference types
that are converted to pointers. These methods are used to create pointers and to allocate the
corresponding memory. The rule described here allows to detect the native implementation
in which the memory was allocated by calling one of these allocation methods, however, the
memory allocated was never released. The rule detects situations in which ‘get’ methods are
used to allocate memory for specific JNI elements that are not released after usage by calling
the corresponding ‘release’ methods.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 55

(11) Rule 11: Not Caching Objects

((Parameter (m,p) = Object) AND
((NbCalls(C,m) >= MaxNbCallsThreshold) OR (IsLoop(m) = True

AND NoO f Iterations >= MaxCountThreshold))

AND (IsCalled(m, fn(y)) = True)
AND (fn(y)| fn ∈ {GetFieldID,GetMethodID,GetStaticMethodID}))

OR ((Parameter (m,p) = Object) AND (IsCalledInMethod(m, fn) = True

AND NbCalls(fn(y)) >= MaxNbCallsThreshold) AND
(fn(y)| fn ∈ {GetFieldID,GetMethodID,GetStaticMethodID}))

This rule allows to detect occurrences of the smell Not Caching Objects based on two situa-
tions. The first one is where the total number in which ids related to the same object p are
looked up for the same class C through JNI allocation methods is greater than or equal to a
specific threshold or the method is called within a loop. Indeed, the ids returned for a given
class C remain the same for the lifetime of the JVM execution. Considering that we have a
native methodm and one of its parameter p is a Java object (Parameter(m,p)=Object), this type
is considered in the native code as a reference type. Thus, unlike primitive types, its element
could not be accessed directly by the native code but should be accessed through the usage
of the methods defined in (IsCalled(m,fn(y)) = True). In this first scenario, the total number
of calls from the Java code to a native methodm that is defined in a classC exceeds a specific
threshold (i.e., NbCalls(C,m) >= MaxNbCallsThreshold) or the method is called within a loop.
In the second scenario, the number of times the same id for an object p is looked up inside
the same methodm (IsCalledInMethod(m, fn)=True) more than a given threshold even if the
methodm is called only once (NbCalls(fn(y)) >= MaxNbCallsThreshold). This last scenario
includes the total number of calls to the predefined methods (NbCalls(fn(y)) independent of
the total number of calls to the method itself.

(12) Rule 12: Excessive Objects

(Parameter (m,p) = Object) AND (IsCalledInMethod(m, f1) = True) AND
(NbCalls(f1(y)) >= MaxNbCallsThreshold) AND

(f1(y)| f1ϵ{GetObjectField,GetBooleanField,GetByteField,GetCharField,GetShortField,

GetIntField,GetLonдField,GetFloatField,GetStaticObjectField}) AND
(∄ f2(y) | f2 ∈ {SetObjectField, SetBooleanField, SetByteField, SetCharField,

SetShortField, SetIntField, SetLonдField, SetFloatField, SetStaticObjectField})

This rule identifies situations in which a JNI object is passed as a parameter (Parame-
ter(m,p)=Object) to the native code. In this context the total number of calls to allocation
methods to retrieve its field id in the same method is higher than a specific threshold (i.e.,
NbCalls(f1(y)) >= MaxNbCallsThreshold), without a call to corresponding set functions to set
the object fields by the native code. However, as described in the specification of the smell in
Section 2.3, having the total number of calls to allocation methods higher than the threshold
is not considered as a smell only in situations where the purpose of those calls was to set the

, Vol. 1, No. 1, Article . Publication date: October 2020.

56 Abidi et al.

object fields by the native code.

(13) Rule 13: Unused Method Implementation

IsNative(m) = True AND IsDeclared(m) = True AND IsImplemented(m) = True
AND IsCalled(m)=False

This rule allows to capture the native functionsm (IsNative(m) = True) implemented in the
C/C++ (IsImplemented(m) = True), declared in Java with the keyword native but never used
in the Java code (IsCalled(m)=False). It looks for the native methods that are declared using
the keyword native with a header in the Java code and looks for the corresponding native
implementation nomenclature.

(14) Rule 14: Unused Method Declaration:

IsNative(m)=True AND IsDeclared(m)=True AND IsImplemented(m)=False

Native functions declared in Java with the keyword native (IsDeclared(m) = True) that are
not implemented in C/C++ (IsImplemented(m)=False). This rule allows to retrieve the native
methods that are declared with a header in the Java code using the keyword native and checks
for the corresponding implementation nomenclature. However, those methods were never
used or even implemented in the C/C++ code.

(15) Rule 15: Unused Parameters

(IsNative(m(p)) = True AND IsDeclared(m(p)) = True AND IsImplemented(m(p)) = True

AND IsParameterUsed(p) = False

This rule reports the method parameters that are used in the Java native method declaration
header using the keyword native (IsDeclared(m(p))=True). However the parameter is never
used in the body of the implementation of the methods, apart from the first two arguments
of JNI functions in C/C++. The rule checks if the parameter p is used in the corresponding
native implementation (IsParameterUsed(p) = False).

B APPENDIX
We present in Table 14 the results of the evaluation of the performance of our design smell detection
approach. The details of the results are available in the replication folder.21
The pilot project as described in Section 3 was the project we developed with the occurrences

of the smells along with the clean code without any smell to test and validate our approach. This
explains the 100% precision and 100% recall for all the smells. For the other projects, the precision
and recall were evaluated through the investigation of the occurrence of the smell itself and the
multi-language files involved on that smell. Most of the rules are trivial and the corresponding
smells could easily be detected by our approach. Therefore, the reasons for false positives and
false negatives are mainly related to the alternative implementation choices of the multi-language
code that do not follow JNI specification guidelines and therefore are not currently covered by our
approach. Indeed, our approach consider the JNI implementation with the appropriate naming
convention as described in the JNI specification (e.g., using the native keyword in the Java native
method declaration, using JNIENV, JNIEXPORT, JNICALL, and Java_ClassName_methodname)
[84]. Thus, our detection approach could only be considered for JNI systems that follows the JNI

, Vol. 1, No. 1, Article . Publication date: October 2020.

Are Multi-language Design Smells Fault-prone? An Empirical Study 57

specification guideline. The validation on some systems were done earlier and thus on the older
versions of the systems. Thus, the validation results only reports on the smell types available in the
analyzed version. As described in the Section 5, our approach may present some limitations for the
smell Local References Abuse in situations in which some specific methods are used to ensure the
memory capacity. However, as per our manual analysis when defining the smells, those methods are
not considered relevant to detect the smell and are not usually used. However, we are aware that in
similar situation, the approach may result in false positives. For the smells Unused Parameters and
Unused Method Declaration, when evaluating the recall and precision we noticed that our approach
was not always able to correctly match the java and corresponding native implementation. This
was mainly due the syntax used in the C implementation that is not completely following the JNI
specification for the naming convention (e.g., Pljava jobject pljava_DualState_key). For the smells
Assuming Safe Return Value and Not Handling Exceptions, the false negatives in Conscrypt were
related an intermediate step that made the detection harder. In this intermediate step, the native
value was checked before returning it to the Java code. The same goes for the smell Memory
Management Mismatch, our rules allows the detection of a specific type of memory issues and do
not cover other types of issues related to the memory.

, Vol. 1, No. 1, Article . Publication date: October 2020.

58
A
bidiet

al.

Table 14. Validation for Each Type of Smells

pilotproject conscrypt pljava openj9 rocksdb jmonkey jna Average
Design Smells FP Precision FN Recall FP Precision FN Recall FP Precision FN Recall FP Precision FN Recall FP Precision FN Recall FP Precision FN Recall FP Precision FN Recall Precision Recall

1 Excessive Inter-language
Communication 0 100% 0 100% 0 100% 0 100% 4 95% 3 96% 9 96% 37 85% 24 96% 91 86% 8 95% 75 65% 5 84% 22 54% 94% 81%

2 Too Much Clustering 0 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0 100% 2 96% 4 92% 0 100% 0 100% 0 100% 0 100% 99% 98%
3 Too Much Scattering 0 100% 0 100% - - - - 0 100% 0 100% 0 100% 0 100% 5 92% 5 92% 0 100% 0 100% 0 100% 0 100% 98% 98%
4 Unused Method Declaration 0 100% 0 100% 6 98% 0 100% 1 98% 42 67% 29 95% 40 94% 2 88% 0 100% 12 95% 86 72% - - - - 94% 86%
5 Unused Method Implementation 0 100% 0 100% - - - - 0 100% 0 100% - - - - - - - - - - - - - - - - - -
6 Unused Parameter 0 100% 0 100% 15 95% 132 67% 0 100% 1 99% 95 95% 76 96% 17 93% 31 88% 59 96% 13 99% 43 88% 64 83% 94% 88%
7 Assuming Safe Return Value 0 100% 0 100% 3 0% 0 100% - - - - 0 100% 4 66% 0 100% 0 100% 32 88% 7 97% - - - - 72% 90%
8 Excessive Objects 0 100% 0 100% - - - - - - - - - - - - - - - - 0 100% 0 100% - - - - - -
9 Not Handling Exceptions 0 100% 0 100% 5 0% 0 100% 0 100% 0 100% 3 98% 86 63% 0 100% 0 100% 31 89% 0 100% 0 100% 1 83% 81% 91%
10 Not Caching Objects 0 100% 0 100% -
11 Not Securing Libraries 0 100% 0 100% 0 100% 0 100% - - - - 0 100% 0 100% 0 100% 3 73% 0 100% 0 100% 0 100% 2 71% 100% 88%
12 Hard Coding Libraries 0 100% 0 100% - - - - - - - - - - - - 0 100% 0 100% - - - - 0 100% 0 100% - -
13 Not Using Relative Path 0 100% 0 100% 0 100% 0 100% - - - - 0 100% 0 100% 0 100% 0 100% 0 100% 0 100% - - - - 100% 100%
14 Memory Management Mismatch 0 100% 0 100% 0 100% 0 100% 0 100% 8 50% 1 94% 4 81% 0 100% 2 75% - - - - - - - - 98% 76%
15 Local References Abuse 0 100% 0 100% 0 100% 1 80% - - - - 0 100% 1 80% - - - - - - - - 2 78% 2 78% 92% 79%

,Vol.1,N
o.1,A

rticle
.Publication

date:O
ctober2020.

	Abstract
	1 Introduction
	2 Background
	2.1 Multi-language Systems
	2.2 Anti-patterns and Code Smells
	2.3 Multi-language Design Smells

	3 Study Design
	3.1 Setting Objectives of the Study
	3.2 Data Collection
	3.3 Data Extraction
	3.4 Analysis Method

	4 Study Results
	4.1 RQ1: Do Multi-language design smells occur frequently in open source projects?
	4.2 RQ2: Are some specific Multi-language design smells more frequent than others in open source projects?
	4.3 RQ3: Are files with Multi-language design smells more fault-prone than files without?
	4.4 RQ4: Are some specific Multi-language design smells more fault-prone than others?
	4.5 RQ5: What are the activities that are more likely to introduce bugs in smelly files?

	5 Discussion
	5.1 Multi-language Design Smells
	5.2 Smells and Faults
	5.3 Risky Activities
	5.4 Implications of the Findings

	6 Threats To Validity
	7 Related Work
	7.1 Multi-language Systems
	7.2 Impacts of Patterns and Smells
	7.3 Patterns and Smells Detection Approaches

	8 Conclusion
	References
	A Appendix
	B Appendix

