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Abstract Nowadays, intelligent systems and services are getting increasingly
popular as they provide data-driven solutions to diverse real-world problems,
thanks to recent breakthroughs in Artificial Intelligence (AI) and Machine
Learning (ML). However, machine learning meets software engineering not
only with promising potentials but also with some inherent challenges. De-
spite some recent research efforts, we still do not have a clear understanding
of the challenges of developing ML-based applications and the current indus-
try practices. Moreover, it is unclear where software engineering researchers
should focus their efforts to better support ML application developers. In this
paper, we report about a survey that aimed to understand the challenges and
best practices of ML application development. We synthesize the results ob-
tained from 80 practitioners (with diverse skills, experience, and application
domains) into 17 findings; outlining challenges and best practices for ML ap-
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plication development. Practitioners involved in the development of ML-based
software systems can leverage the summarized best practices to improve the
quality of their system. We hope that the reported challenges will inform the
research community about topics that need to be investigated to improve the
engineering process and the quality of ML-based applications.

Keywords Machine Learning Application Development · Testing Machine
Learning Application · Machine Learning Best Practices

1 Introduction

Artificial Intelligence (AI) and Machine Learning (ML) have emerged as pow-
erful tools to develop data-driven solutions for diverse real-world problems.
Recent breakthroughs in machine learning have greatly inspired the surg-
ing adoption of AI capabilities for automation by embedding intelligence into
modern software and services [1]. AI-based automated supports now span al-
most every sphere of human life: business, education, healthcare, research,
communication, security, assistive technologies and so on. With the diversity
in application domains, the types of problems and the characteristics of the
data may vary greatly and so the ML algorithms. From an engineering per-
spective, once an algorithm is implemented, it requires a solid architecture,
model/data validation, proper monitoring for changes, dedicated release engi-
neering strategies, judicious adoption of design patterns and security checks,
and thorough user experience evaluation and adjustment. A failure to properly
address these challenges can lead to catastrophic consequences. Classically, we
have constructed software systems in a deductive way, or by writing down
the rules that govern the system behaviors as program code. With machine
learning techniques, we generate such rules in an inductive way from training
data. This shift of paradigm induces some challenges that are unique to ML
application development [4, 5].

Recently, practitioners from leading software companies like Google [2] and
Microsoft [1] have been reporting about their experience building ML-based
applications and raising awareness on some of the challenges posed by ML
application development. Sculley et al. [2] outlined some challenges of ML ap-
plication development by identifying harmful design patterns that may incur
excessive maintenance costs. In addition to characterizing the challenges, they
also made some suggestions on how to deal with those challenges. Amershi et
al. [1] presented a survey conducted with developers from Microsoft, showing
how AI application development aligns with a nine-stage development work-
flow. They outlined three fundamental differences between ML application
development and traditional software development. They observed that data
management for ML applications is quite complex compared to other types
of software, and that model customization and reuse requires some specific
skills. They also reported that AI modules are difficult to handle compared to
traditional software components due to complex inter-component relationships
and non-monotonic error behaviour. Amershi et al. [1] also suggested some
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Fig. 1 Phases of ML workflow (adopted from Amershi et al. [1])

best practices for software engineering of ML applications, focusing on data
and model management, and the interfaces between ML components and the
overall system.

Although these studies (i.e., [1], [2]) have provided valuable insights on
the challenges of developing AI/ML applications at scale in the context of
large companies, we still don’t know how small and medium-sized enterprises
(SMEs) handle ML application development. It is important to know the chal-
lenges and best practices followed by practitioners building ML applications
across different domains and in diverse development settings. This paper aims
to fill this gap by examining experiences and collect insights from ML prac-
titioners from across the globe with varying skills and experiences and from
diverse development domains. We present a survey of ML development prac-
tices and insights obtained from the feedback of 80 ML practitioners working
in the software industry or in academia.
For the survey, we reached out to over 700 AI/ML practitioners by email. We
communicated our request for participation in the survey using contacts from
the professional network LinkedIn. We selected the participants based on their
profile information indicating their roles associated with AI/ML in academia
or industry. We also collected the emails of the participants from GitHub
based on their contributions to ML projects. We received responses from 80
participants with diverse technical and professional background. We analyze
the survey data to derive insights and summarize them along the phases of
the ML development workflow described in [1].

In this paper, we make the following contributions:

– We conduct a comprehensive survey involving 80 ML practitioners from
diverse backgrounds to identify the state of practices and challenges in ML
application development.

– Our survey covers four key phases of ML application development life cy-
cle, namely (1) data collection and preprocessing, (2) feature engineering,
(3) model building and testing, and (4) integration, deployment and moni-
toring, to identify challenges and practices from practitioners’ perspective.

– We synthesize our 17 key findings to show how those findings can benefit
researchers and practitioners in developing ML applications of high quality.
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Practitioners embarking on new or ongoing efforts to develop ML-based appli-
cations can take advantage of the summarized best practices to improve the
quality of these applications.

The remainder of the paper is organized as follows. Section 2 dis-
cusses some basic concepts of ML application development, common trends
in ML application, their benefits and challenges. Section 3 presents the de-
tail of the survey including design, objective, participants, data collection and
analysis methodologies. Section 4 presents the results of our survey. Section
5 discusses these results. In Section 6, we discuss potential threats to our
methodology and findings. Section 7 presents some prior research related to
our study followed by the conclusions in Section 8.

2 Background

This section briefly presents some important concepts of ML application de-
velopment. We also briefly compare and contrast traditional software systems
and ML-based systems.

2.1 Machine Learning Applications

Traditional software systems are constructed based on a well-defined set of
rules that govern the system’s behaviour. However, in ML applications the
behaviour is controlled by rules inferred from the data [5]. ML applications
as data-driven systems have induced a paradigm shift in the software devel-
opment process, making the development, testing and verification of the ML
applications intrinsically harder. A defect in a ML application may come from
training data, program code, execution environment, or third-party frame-
works. Given the increasing adoption of ML/AI, it is important to understand
the challenges of ML application development and devise some best practices.
Since ML/AI is an emerging field, we believe that developers who are currently
building ML applications are best positioned to reflect and report about the
challenges and pitfalls of ML application development. Hence, in this paper,
we conduct a survey of ML developers to document their experiences and
formulate best practices and the challenges of ML application development.

2.2 ML Application Development Life Cycle

In our study, we consider the ML application development life-cycle presented
by Amershi et al. [1] as shown in Fig. 1. We study practitioners’ perceptions
of the challenges and common practices in ML application development. We
briefly discuss the phases of the ML application development life cycle bellow.
A more detailed discussion of the ML application development life cycle is
available in [36].
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2.2.1 Model Requirements

In this phase, developers define the requirements for data and algorithms re-
garding a ML problem at hand. They need to identify relevant and representa-
tive data. The requirement is very important since it has a significant impact
on the success of the other phases of the ML workflow. Selecting insufficient or
biased data will likely lead to inadequate ML models. In this phase, develop-
ers also often have to mediate between different conflicting goals. For example,
ensuring high performance of models while satisfying restrictions enforced by
regulations governing privacy and security of information (which often restrict
access to some data). Regulations can also induce requirements on the mod-
els. For example the General Data Protection Regulation (GDPR) enforces
the right to explanation, which requires that ML models be explainable and
interpretable.

2.2.2 Data Collection and Preprocessing

ML applications are data-driven and thus the collection and preprocessing of
the data is important. In this phase, data is collected from internal or ex-
ternal sources (e.g., mainframe databases, sensors, IoT devices, and software
systems) and is presented in different formats (e.g., various media types). It
can be structured (such as database records) or unstructured (such as raw
text) and is delivered to ML models either in batch (e.g., discrete chunks from
mainframe databases and file systems) and/or real-time (e.g., continuous flow
from IoT devices or Stream REST APIs). Developers often have to leverage
complementary automated tools that support batch and/or real-time data in-
gestion strategies, to collect data needed for training their ML models. Once
data is collected, it often must be cleaned to ensure consistency and the ab-
sence of redundancies. Common data cleaning tasks include: removing invalid
or undefined values (i.e., Not-a-Number, Not-Available), duplicate rows, and
outliers that seems to be too different from the mean value); and unifying the
variables’ representations to avoid multiple data formats and mixed numerical
scales. This preprocessing step is often done using data transformations such
as normalization, min-max scaling, and data format conversion.

2.2.3 Feature Engineering

Feature engineering is the process of extracting informative features from the
data that ML algorithms can learn from to build ML models. Features need
to be able to represent the characteristics or patterns in the dataset. Once
suitable features are extracted, it is also important to select the best subset of
features for the models. This process is called feature selection. Extraction and
selection of features comprise the feature engineering process. It is an essential
step in the construction of conventional ML models. However, in the case of
deep learning models, the features are inferred automatically. In fact, deep
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learning models build complex features automatically as a part of their statis-
tical learning process from data. For example, conventional computer-vision
models require image features, including edges, corners and blobs that can
be detected using low-level image processing operations, while Convolutional
Neural Networks process raw images directly.

2.2.4 Model Training and Evaluation

During the training phase, a suitable machine learning algorithm is applied
to the cleaned and prepared dataset. Different model parameters are tuned
iteratively to learn the mapping between the features and the corresponding
labels (in case of supervised learning). Models are trained up to a desired
level of accuracy. The trained model is evaluated on the validation data set,
to evaluate the performance. The performance of the model is measured using
a predefined set of performance metrics such as prediction or classification
accuracy.

2.2.5 Integration, Deployment and Monitoring

Once a trained and validated model is available, it is integrated into the target
application for the desired functions. The application is deployed on suitable
devices or platforms. Deployed ML models need monitoring for performance
and potential errors during real-world executions.

In case of errors or major shifts in the patterns in the data, the models
may need to be retrained. Thus, the phases of the ML workflow are not linear
as it looks like in Fig. 1, rather the phases in the ML application development
life cycle are iterative.

In our study, we focus on the following four phases of ML workflow ex-
cept the requirements phase namely: data collection and preprocessing, fea-
ture engineering, model training and evaluation, model management (covering
integration), and model deployment and post-deployment monitoring. We do
not cover the requirement engineering phase in this survey and we plan a
future study of its own. This is because requirements engineering for ML is
quite complex [18, 39]. ML engineering introduces a paradigm shift compared
to conventional software engineering [24] and so the requirements engineer-
ing [39]. ML applications are likely to have ML and non-ML requirements.
ML application are often developed as a component interacting with other
non-ML components to build large and complex systems. Functional and non-
functional requirements, ML-specific quality trade-offs, and ML and non-ML
components’ interactions require different considerations. These make the re-
quirements engineering of ML application a challenging task. Ishikawa and
Yoshioka [38] in their recent study listed requirements engineering as the most
difficult activity for the development of ML systems. Our survey thus focus on
the above mentioned four phases of ML workflow and identifies the common
practices and key challenges in the ML workflow.
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Fig. 2 Schematic Diagram of the Study

3 Study Design

We conducted an online survey to understand the practitioners’ experiences
in ML application development. We present the overall approach of the study
in Fig. 2. We briefly discuss our study objectives and methodology as follows:

3.1 Objectives of the study

Our key objective in this research is to know the perceptions of the ML prac-
titioners about the challenges and state of practices in developing machine
learning applications. Using an online survey we ask the developers questions
on development activities encompassing different phases of the ML applica-
tion development life cycle. Our key focus in this study is understanding the
challenges and best practices in data collection and preprocessing, feature en-
gineering, ML model building, testing, and deployment. As ML applications
are data-driven, we first focus on data processing and feature engineering.
We aim to know about the current practices in data processing and feature
engineering including source and types of data, data preprocessing activities,
tools and frameworks. Then we focus on identifying the challenges and best
practices in model building, testing, deployment, and post-deployment model
maintenance.

3.2 Survey Design

To conduct the survey we defined an online questionnaire for the ML practi-
tioners to participate anonymously. The first and the third author prepared
the initial design of the questionnaire based on the study of common prac-
tices and challenges reported in the existing literature [1]. The other authors
then reviewed the survey questionnaire. The questionnaire was then updated
based on the comments from all the collaborating authors. The questions in
the questionnaire cover the development activities of different phases of the
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Table 1 Research Questions

Contexts Research Questions

ML Trends
RQ1: What are the current industry trends in developing
ML applications?

Data Processing

RQ2: In practitioner’s perception, what are the important
quality attributes of ML data?

RQ3: What is the state-of-the-practice regarding the data
processing tasks, techniques and tools for quality assur-
ance of ML data?

RQ4: What are the challenges of ML data cleaning?

RQ5: What are the challenges of data labelling faced by
the ML application developers?

RQ6: What are the common approaches to validating
data labelling by the ML practitioners?

Feature Engineering

RQ7: How do ML practitioners identify class-imbalance
in ML data and how do they ensure class-balance?

RQ8: What are the feature engineering techniques and
tools commonly used by ML developers?

RQ9: What are the common limitations of the existing
feature engineering tools and techniques?

RQ10: What is the state-of-the-practice in feature quality
assessment in ML application development?

RQ11: What are the common practices for feature selec-
tion in ML application development?

Model Building

RQ12: What are the practices for ML model implemen-
tation commonly adopted by the practitioners?

RQ13: What is the state-of-the-practice for ML model
implementation testing by ML practitioners?

RQ14: What are the common symptoms that practition-
ers use to detect defects in an ML implementation?

RQ15: What are the practitioners perceived challenges of
testing ML application?

Model Management

RQ16: What are the developers-perceived challenges of
testing ML model deployment?

RQ17: What are the factors that ML developers com-
monly focus on during ML model management?

ML application development life cycle. In addition, we asked the participants
to report their technical skills, experience in ML and software development,
job roles, and domains of their ML application development. The survey forms
were made available to the interested participants through a web page. As part
of the survey design, we first conducted a pilot study to collect feedback on
the survey questionnaire from ML practitioners. We shared our initial survey
questionnaire with 10 randomly selected practitioners with at least five years
of experience in ML application development. We selected participants based
on their experiences shared on their Linkedin profiles. We received anonymous
feedback from three (3/10) participants on the questionnaire. All three par-
ticipants have PhD and hold relatively senior positions (Lead data scientist,
Senior ML engineer, ML Research Associate) in the industry or in the aca-
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demic ML research lab. We refined our questionnaire based on their feedback
by adding/modifying questions and the types of questions (open/closed). The
data from the pilot study is used only to improve and finalize the design of
the questionnaire and is not included in the final survey data. We then com-
municated the updated survey questionnaire to the participants in the final
study.

The survey has three parts as shown in Table 2. Part 1 collects some demo-
graphic information about the participants including the type of organization
(e.g., industry or academia), job roles, skills, experience and ML domains
of expertise. Part 2 of the questionnaire focuses on challenges and practices
in the data collection, preprocessing and feature engineering. Part 3 of the
questionnaire asks the participants about their development practices, tools,
technologies and frameworks in ML model building, testing and deployment.
All sections contain both open-ended and close-ended questions and also op-
tions to add comments by the participants where applicable. All the questions
collectively meet the data requirements necessary to answer the research ques-
tions we defined in Table 1 for this study. In addition, an informed consent
form was also available to the participants on the online survey page outlining
the detailed objectives, privacy and data use policy of the study. All queries
and concerns of the potential participants were clarified by email responses
from the authors.

3.3 Data Collection

To collect responses from the machine learning practitioners regarding our
survey, we communicated the online link of the survey to the prospective
participants by email along with our research objectives and requested their
participation. Interested participants submitted their responses anonymously
using the randomly generated participants’ identification numbers. At the end
of the survey deadline, we downloaded the responses of the participants. We
used the participants’ IDs in tracking and analyzing the anonymous survey
data.

3.3.1 Selection of Participants

We selected participants based on their self-declared profiles in the profes-
sional network LinkedIn. We also selected ML developers from the GitHub
user community contributing to the development of ML applications. In both
cases, we ensured that they are professionally attached to ML/AI application
domains. For example, from LinkedIn, we selected users either based on their
employment in different roles related to ML/AI application such as AI/ML
engineer/developer, data scientist, AI/ML researcher/scientist, Software engi-
neer, software architect, and PhD or Masters student in ML or relevant areas.
For GitHub users, on the other hand, we select users from the list of con-
tributors in ML/AI projects. In either case, our focus was to reach out to
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Table 2 Structure of the Survey

1 Part 1
1.1 : Organizational Information

1.1.1 : Organization Type
1.1.2 : Application Types
1.1.3 : ML domain of specialization

1.2 : Personal information and Experience
1.2.1 : Software Development Experience
1.2.2 : ML Experience
1.2.3 : Educational qualification
1.2.4 : Programming languages and frame-

works
1.2.5 : Roles and Responsibilities

2 Part 2
2.1 : Data for Machine Learning

2.1.1 : Data Source
2.1.2 : Data Quality- Attributes and evalu-

ation
2.1.3 : Data Cleaning- Approach and chal-

lenges
2.1.4 : Data Labeling- tools and challenges

2.2 : Feature Engineering (FE)
2.2.1 : Feature Extraction- Tools, Limita-

tions
2.2.2 : Challenges in FE for ML
2.2.3 : Feature Selection- approaches
2.2.4 : Feature Assessment/Validation

3 Part 3
3.1 : ML Model Training

3.1.1 : Implementation Strategy
3.1.2 : Testing Model Implementation
3.1.3 : Model review and bug identification

3.2 : ML Model Evaluation
3.2.1 : Testing Approaches and metrics
3.2.2 : Challenges in Model testing

3.3 : ML Model Deployment
3.3.1 : Deployment Strategies
3.3.2 : Integration and post-deployment

testing
3.4 : ML Model Management/Monitoring

3.4.1 : Extent of Performance Monitoring
3.4.2 : Performance Parameters
3.4.2 : Performance Monitoring Challenges

potential participants with expertise and experience in developing ML appli-
cations. Once selected, we requested the potential participants by email to
participate in the online survey. We gave the necessary details on the objec-
tives, procedures, and policies of the study and asked for their consent to
participate voluntarily.

We received responses from practitioners of diverse backgrounds. From
about 700 requested potential participants, 81 respondents completed the sur-
vey which is about 11.57%. To mention, out of the 81 respondents, all re-
sponded to Part 1 of the survey, 49 participants responded to Part 2 and 44
participants responded to Part 3 of the survey. We excluded responses of one
participants with partial response to only Part 1 of the survey. So at the end,
we retained the responses of 80 participants for our analysis.
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3.4 Data Collection and Analysis

Our survey was designed using Google forms and was made available to the
respondents through a provided web link. We collected the data once the sur-
vey period was ended. We did some preprocessing of the responses to remove
formatting or minor linguistic differences for correct analysis and descriptive
statistics. To answer the research questions, we analyzed the data to com-
pute descriptive statistics. We then used visualization techniques to present
the responses to have better insights into the trends, similarity, and contrast
among different class of responses. For qualitative analysis of the responses
from open-ended questions, we applied grounded theory [37, 41] based coding
of the responses for categorization of the challenges and practices in different
phases of the ML development. Here, we assigned qualitative coding for the
segments of data from the participants’ responses. This aims to make ana-
lytic interpretations of the concrete statements from the survey participants
to compare, categorize, and summarize the responses. We named (coded) each
distinct segment of data to develop abstract concepts for interpreting that data
segment. The coding is to link data to an emerging theory that aims to explain
the data. We started with initial coding that is open to possible concepts fol-
lowed by more focused coding to organize or synthesize frequent initial codes.
We did theoretical integration during focused coding and continue for subse-
quent steps to pinpoint the most salient categories from the data. Two of the
authors performed classifications independently regarding the goals defined by
the corresponding research questions. The authors resolved the disagreements
observed in some cases by meeting in person to finalize the data classification.
The classified data was further summarized based on analyzing the distribu-
tions and visualization. Based on the analysis, we summarized the practices
and challenges in ML application development as reported by the survey par-
ticipants.

3.5 Privacy and Anonymity

To ensure the privacy and anonymity of the participants, we did not collect any
personal information. The participants were assigned a randomly generated
code to use as the user ID. We use cookies to keep track of the returning user
to assign the same user ID for different parts of the online survey. Participants
were able to access the privacy and data usage policy along with the consent
from for voluntary participation. Participants’ data will be securely preserved
for seven years. Participants were allowed to withdraw themselves and request
data removal at any stage of their participation.

4 Results

In this section, we present our results from the survey to answer the research
questions. We also present our insights into the survey responses from the
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expert practitioners regarding the challenges and best practices in ML appli-
cation development. We present our findings in the following subsections:

4.1 Demographic Distributions

We summarize the demographic information of the participants as follows:

4.1.1 Background

Among the 80 respondents who completed the survey, 56(70%) participants
are from the software industry, 18(22.5%) from academia or research, 1(1.25%)
was with both academic and industry affiliation, and 5(6.25%) participants
identified themselves with other affiliations (Fig. 3). The participants are from
diverse academic background (Fig. 4) comprising of 16 PhDs or above (20%),
32 Masters (40%), 31 Bachelors (38.75%) and 1(1.25%) mentioned as with
“Other” level of educational qualifications.

Fig. 3 Organization Types of the Participants

The participants are from diverse roles (Fig. 5) in their corresponding orga-
nization with 26(32.5%) AI/ML engineer, 18(22.5%) data scientist, 24(30%)
researcher with 10(12.5%) of them identified themselves as AI/ML research
scientist. Besides, 9(11.25%) of the participants are with the roles of AI/ML
developer/analyst, one (1.25%) software development intern, and 4(5%) with
upper-level roles including one chief AI officer, ML software architect, software
team lead, deep learning manager. In addition, the participants include three
(3.75%) PhD students, two (2.5%) Masters students and one other student.
The above diversity in the participants comprising both researchers and prac-
titioners allows us to obtain a good representation of the skills and experience
of varying levels.
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Fig. 4 Educational Qualifications of the Participants

Fig. 5 Job Titles/Roles of the Participants

4.1.2 Professional experience

As shown in Fig. 6, the participants are highly experienced in software devel-
opment with 53.8% of them have a minimum 4 years of experience in software
development. Among the participants, we have 35(43.8%) participants who
have worked for five years or more in software development and 8(10%) with
four years, 9(11.3%) with three years, 19(23.8%) with two years of experience
respectively. Only 9(11.3%) of the participants are relatively novice with less
than 1 year of experience. The participants have diverse levels of experience
in machine learning (Fig. 7) with more than 80% of the participants having at
least two years of experience in machine learning application development. To
be specific, 13(16.3%) participants have five years or more experience in ML
while 11(13.8%) have four years, 12(15%) have three years, 30(37.5%) have two
years, 14(17.5%) are relatively novice with less than one year of experience in
ML.



14 Md Saidur Rahman et al.

Fig. 6 Software Development Experience of the Participants

Fig. 7 ML Development Experience of the Participants

It is important to note that there is a drop in the percentage of participants
in higher experience categories. For example, participants with experience of
five years or more dropped from 35(43.8%) to 13(16.3%) from software devel-
opment to ML application development context. This could be explained as
the migration of experienced developers from traditional software development
to ML application development to adapt to the increasing AI/ML trends in
the software industry. This is valuable to our study as such participants have
wealth of knowledge and experience to compare and contrast the traditional
software development and ML application development especially regarding
the challenges and best practices.

4.1.3 Domains of expertise

The survey participants work on developing applications in diverse machine
learning domains. Our survey data shows that image processing and natural
language processing (NLP) are the two domains with the top two number
of participants, 45(56.25%) and 44(55%) from each respectively. Among the
participants, 38(47.5%) work in the area of predictive analytics and recom-
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mendation while 31(38.75%) participants claimed to have working experience
on clustering. Besides, 20(25%) and 13(16.25%) participants work on video
processing, and speech and audio processing respectively. Also, 3(3.75%) of
the participants use reinforcement learning (RL) in their ML applications
while some other application domains of the participants include areas such as
control and optimization, games, rendering and animation, security (anomaly
detection), music generation, and biomedical engineering. Representation of
participants from different application domains provides us with the opportu-
nity to have developers’ insights on the challenges and practices regarding the
diverse area of machine learning and AI.

Fig. 8 ML Domains of Expertise of the Practitioners

Participants have expertise in a diverse set of programming languages and
technologies. Among the participants, 77(96.25%) are Python users, which
shows that Python is a remarkably popular language among ML practitioners.
Besides Python, we have 16(20%) C++ users, 11(13.75%) R users, 10(12.5%)
Java users, 8(10%) Matlab users and 6(7.5%) SCALA users. In addition, a few
participants claimed to use one or more of C#, CUDA, STAN, JavaScript,
Node JS, and Clojure as their languages in ML application development.

4.2 Trends in ML Application Development

Here, we report the current trends in developing ML applications in the indus-
try based on the response of the practitioners. We focus on the types of ML
applications software industries are developing, software development method-
ologies, and the ML frameworks and tools developers are using to develop ML
applications to answer the following research question:

RQ1: What are the current industry trends in developing ML applications?
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Fig. 9 Programming Languages for ML Development

4.2.1 ML Application Types

Responses of the participants give an overview of the ongoing trend in the
AI/ML industry regarding the types of applications developed (Fig. 10). We
asked the participants to list the types of AI applications commonly devel-
oped in their companies. We observe that companies are developing diverse
classes of AI-based solutions encompassing different aspects of daily life, busi-
ness, education, health, commutation, security, entertainment, research and
innovation, social networking and so on. Based on the survey, we observe that
software industries are highly focused on developing AI-based solutions for
business intelligence (29 (36.25%)). This is reasonable given the ongoing trends
in the companies to leverage AI for improved products and services, customer
clustering, product recommendations, prediction and forecasting for business
decision support. The practitioners are also involved in document processing
(20(25%)) commonly based on the application of natural language processing.
Companies are also developing solutions for entertainment (12(15%)), health-
care (9(11.25%)), education (7(8.75%), security (7(8.75%)) and communica-
tion (6(7.5%)).

Besides, there has been a considerable focus on developing ML-based solu-
tions for business including E-commerce, finance, insurance, retails, and rev-
enue management as 10 (12.5%) of the participants reported these application
types developed by their companies. Another important application area the
practitioners are working on is environmental data analysis and forecasting
as reported by 9(11.25%) participants. Participants also reported working on
building applications for social network analytics, control and automation such
as self-driving cars and other areas of research and development in ML/AI in-
cluding computer vision, speech processing, and simulation. So, our survey
shows the diverse area ML/AI is being applied as the recent trends.
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Fig. 10 ML Application Types

4.2.2 Software Development Methodologies

As reported by the practitioners, agile software development methodologies
have been widely adopted in software industries for ML application devel-
opment. Among the participants 52(65%) participants report that they use
agile process for ML application development. Some widely used agile process
frameworks used by the practitioners are namely SCRUM [30], Kanban [29],
and LEAN [28]. Practitioners also reported the use of tools such as Jira1

and Zenhub2 for the management of agile development process. Among the
participating developers, 10 (12.5%) reported to use other data- or test-driven
development process. A portion (18(22.5%)) of participants reported that they
do not use any specific development process for developing ML applications.

As mentioned by the practitioners, although agile process are the most com-
monly used, the development process is sometimes tailored to fit specific appli-
cation development context, i.e.,“agile/scrum but tailored towards ML model
development processes”. Some practitioners refer to their agile development
process as “loosely organized agile” or “light agile” and “more explorative”. De-
pending on the context, some developers use either some adhoc or agile process
for ML application development. They mentioned that “many smaller-scale
models are prototyped on an ad-hoc basis with no formal project methodology.
Medium and larger projects borrow agile techniques”. While many practitioners

1 www.atlassian.com/software/jira
2 www.zenhub.com
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Fig. 11 Software development methodologies used for ML Application Development

do not use “specific development process”, some prefer to use a data-driven
or “feature-driven” or “test-driven development” development processes in-
volving “unit testing, integration testing, devops (continuous integration and
delivery)” for ML application development. Thus, we observe that practition-
ers mostly use agile methodologies for ML application development. However,
the choice of development process may vary and the development process may
require to be tailored to fit into specific ML application development needs.

4.2.3 ML Frameworks and Tools

From the responses of the participants, we have a list of popular ML frame-
works and tools widely used by the ML practitioners (Fig. 12). Among the
respondents, 58(72.5%) use TensorFlow as their ML framework for application
development showing it as the most popular framework in AI/ML application
development. Then, 53(66.25%) of the participants reported that they use Py-
Torch making it the second-highest popular ML framework followed by Keras,
a high-level ML framework based on TensorFlow which is reported to be used
by 44(55%) participants. Among other ML frameworks MXNet, Scikit-learn,
Caffe, and Deeplearning4j are reported to be used by 9(11.25%), 5(6.25%),
4(5%) and 3(3.75%) participants respectively. Some participants have also re-
ported that they use frameworks like Chainer, Tensorflow.js, Caret, OpenCV,
ML.Net, XGBoost, MLlib for their ML application development. It is to be
noted that each participant may use multiple frameworks for ML application
development and thus the count of participants for different frameworks are
not mutually exclusive.
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Fig. 12 Commonly Used ML Frameworks for Application development

Finding 1 : As reported by the practitioners, the trends in ML appli-
cation development show that (1) Business Intelligence (BI) systems is
at the key focus of ML application development. Other ML application
types include (but are not limited to) healthcare, security, document
processing, entertainment covering wide areas for human life and busi-
ness, (2) practitioners widely use agile software development method-
ologies to develop ML applications, and (3) TensorFlow is the most
widely used ML framework followed by PyTorch and Keras. However,
ML developers use different development processes and frameworks
based on their specific ML development context.

4.3 ML Data Collection and Pre-processing

Machine Learning applications are data-driven, and so it is intuitive that the
quality of the input data is very important for the performance of the ML
models. Based on the responses from our survey participants we compile dif-
ferent processing tasks, common practices in ML data preparation. From the
responses, we know the state of practices adopted by the ML practitioners. We
summarize the common practices and challenges related to ML data processing
as in the following:

4.3.1 ML Data Sources

Depending on the ML application domains, the types of the data may vary
widely as well as the sources of the data. Data can be of different forms such
as text, images, videos, speech, business transactions, time-series data and so
on. Similarly, these data may come from different private or publicly available
sources (Fig. 13). As mentioned by the survey participants, companies rely on
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Fig. 13 ML Data Sources

one or more sources for ML datasets for their ML application development.
One of the common sources of ML data is the open-source data sets made pub-
licly available by different academic institutions, companies, various tech and
research communities (e.g., Arxiv, Kaggle). As mentioned by the participants,
companies rely on internal company data for developing ML solutions either
for themselves or for others. Many software companies develop custom ML
solutions for their third party clients based on their supplied data regarding
business transactions, users, and the data collected from internal operations
or even external environments using sensors over a certain period of time. ML
data is also collected from online sources by web crawling and scraping.

To summarize, Open-source data sets are the leading source of data for
ML application development. Besides, private data and data from third-party
clients are also common sources of ML data as reported by the practitioners.

4.3.2 RQ2: In practitioner’s perception, what are the important quality
attributes of ML data?

ML models are data-driven and so the quality of the data is important for the
performance of the ML models and consequently the applications containing
the ML models. We asked the practitioners about this important topic to learn
about the quality attributes that ML developers focus on in practice while
assessing data quality. We then compile and classify the data quality attributes
based on the responses of the survey participants. We list the key observed
quality requirements of the ML data as pointed out by the practitioners as
follows:

Feature representativeness: In machine learning, the primary purpose of the
data is to train the ML models. For this, the data must be representative
of the necessary discriminative features to learn from. Thus, how well data
represent the characteristics capable of differentiating different hidden patterns
in the data is very important. Practitioners thus emphasize on “feature quality”
which requires “high discrimination between features”. This can be assessed
by statistical measurements on the data set such as “balanced distribution”,
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“high variance, and “low correlation” among the features and with the “target”
variable(s).

Adequacy: ML models need an adequate amount of data samples for training.
In practitioners’ word ML models need “lots of samples with wide variation,
equal(ly) distributed across fields/classes”. The adequacy of the data is hard
to define and depends on different factors such as the data, problem, number
of features, number of distinct classes, and ML algorithms.

Diversity: ML models need to have “diversity” regarding the coverage and
distribution of data among different classes present in the data set. The practi-
tioners have emphasized on the diversity mentioning that the data should con-
tain “...samples with wide variation, equal(ly) distributed across fields/classes.”.
The practitioners also emphasized on the “distribution of response variables,
(and) distribution of each features”. They also mentioned “subject area cov-
erage, sampling uniformity, sparsity, vocabulary coverage” as important char-
acteristics that enhance the diversity in the data set. Like other data quality
characteristics, different diversity factors and their importance may vary with
data, problem and the algorithms.

Labelling Accuracy: Labelling accuracy is very important for the ML data set.
So, it is important to ensure that there are “no mislabelled data. The dataset
should be treated with the utmost care, because a bad dataset means a bad
model even if it’s trained well.” Practitioners thus emphasize on data “quan-
tity and correct labels”. “The quality of the labels i.e.,“reliability of (data)
annotations” is very important and “the structure, accuracy and quality of
information would play a large role in determining the importance of the ML
data sets.” So, in practitioners’ word “(labelling) consistency is very impor-
tant; for a particular field I was working on a year ago, there were only two
available data sets, but both of them had inconsistent labeling, which made
them unusable.”

Completeness: Machine learning data need to be complete meaning that there
should not be missing values in the data or at least there should be “enough
data with minimum missing values”. Data samples with missing values are
either dropped or some transformations are applied to fill in the missing values
with the best approximate values.

Consistency: Like the adequacy of the ML data, it is very important for the
data to be consistent. The consistency of the data can be in terms of the
correctness of values, data types or the format or structure of the data or
even the labelling. The practitioners thus focus on the “structure, accuracy
and quality of information”. ML data need to be “consistent with inference
data; be relevant for the model; be consistent with itself.”. Consistency defines
the suitability of the data to use in the ML models.
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Reliability: ML data need to be reliable, meaning not only correctness and
consistency but also the reliability of data source, data collection and anno-
tation procedure. The reliability of ML data can be validated by different
cross-validation processes. The practitioners suggest checking if “it (the data)
has been verified by multiple sources”. It is crucial especially in health and
safety critical domain such as for “medical data”. ML data to be reliable,
practitioners expect that the “data is clean, well explained, come from good
annotations. You (developers) also need to know how the data was generated.”.

Noise Level: ML data can have noise in it due to missing or erroneous values
and outliers in the data. The data can be incorrect in terms of values or data
types. Thus, ML data require different transformation and cleaning to remove
noises and to improve data quality.

Relevance: ML data need to be relevant for the problem, i.e.,the data should
represent the necessary characteristics meaning the “existence of viable fea-
tures” that ML models can learn from. Like other data quality requirements,
the relevance of the data “depends on the problem”.

Class Balance: For ML data, class balance is crucial for the accuracy of the
ML model. For an unbalanced data set, the model is likely to be biased to the
majority class, leading to poor accuracy, especially for the minority class. Prac-
titioners recommend the data “samples (to be) well balanced across classes”
i.e., data is “equal(ly) distributed across fields/classes”.

Distribution: ML data should have balanced distribution across the classes
and have “sampling uniformity”. Different statistical measures (i.e.,descriptive
statistics), variance, correlation are commonly used by the practitioners to
measure data relation and distribution.

Performance impact: One of the key concerns is how well the model performs
based on the given training data. The quality of the data is thus also reflected
in the performance of the model. For such quality assessment, practitioners
often build a prototype model based on the subset of data and measure model
performance such as “AUC ROC on test set”.

Low Bias: There can be different sources of biases in the ML data set. The
biases can originate from the human error or perception differences of it can
be from the data historically containing discrimination or biases in it. The
biases should be eliminated from the data set as much as possible. Thus, the
practitioners recommend that ML data need to be “diverse, not biased”.
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Finding 2 : Based on the practitioners’ responses, the key charac-
teristics of ML data are: feature representation, adequacy, diversity,
labelling accuracy, completeness, consistency, reliability, noise level,
relevance, class balance, data distribution, performance impact, and
biasness. ML data should maintain these quality attributes to build
high-performance models.

4.3.3 RQ3: What is the state-of-the-practice regarding the data processing
tasks, techniques and tools for quality assurance of ML data?

Quality of the dataset is one of the key factors that contribute to the per-
formance of the ML models. Here, we discuss common data processing tasks,
techniques, and tools for ML data processing for quality assurance of ML data.

Data Processing Tasks: Practitioners may need to employ a series of prepro-
cessing and transformation to ensure the desired quality of the data or ML
models in turn. Based on the practices reported by our survey respondents,
we can broadly group the data processing task into the following:

– Data Transformation: ML practitioners often need to apply different trans-
formations on the dataset to prepare for machine learning algorithms.
These transformations may include simple corrective transformation such
as adjusting the data types or structure of the data. Data may also need
some advanced transformations like reducing the dimensions of the data
while preserving its key characteristics or hidden patterns. ML data often
require normalization and scaling to transform the values to a range suit-
able for ML algorithms. Another important quality attribute of ML data is
the class balance, which can affect model performance. In such a case, some
practitioners reported that different boosting and re-sampling techniques
are used to remove class imbalance problems in the ML dataset.

– Data Analysis: To analyze and assure the quality of ML data, practition-
ers employ different analysis techniques. The first step in quality assurance
is to understand the dataset regarding the distribution and basic trends.
Practitioners commonly do a manual analysis to have the basic perception
of the data characteristics. Another common approach as mentioned by
the practitioners is the visualization of the data. The common visualiza-
tion techniques include the presentation of data using different charts and
graphs. Some practitioners also use advanced visualization techniques such
as t-SNE [15] that facilitates the visualization of multidimensional data in
a more flexible and elegant way. In our survey, practitioners also reported
that they use exploratory data analysis to evaluate data quality. This anal-
ysis helps to understand the common characteristics, category, and trends
in the dataset. Another common approach to data quality assurance is to
perform statistical analysis or to cluster data to understand the distribu-
tions and trends in the ML data set. The analysis can be performed on
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randomly selected samples from the data set or on the whole dataset. An-
other approach to assess ML data quality is to build a prototype model
based on a subset of the data and verify the model performance. The type
and extent of analysis may depend on the problem, data and specific ob-
jectives of the data analysis.

Tools and Techniques for ML Data processing: The practitioners depend on
different tools and techniques for ML data analysis. One common technique
reported by our survey participants is the manual inspection of the data. Man-
ual inspection is a reliable technique as the developers can take advantage of
their domain knowledge to assess the quality of the ML data to perceive the
common patterns in the dataset. ML data may also need to be annotated
manually for categorization and labelling. However, manual analysis is likely
to be costly and may suffer from scalability issues in case of a large data set.
Another approach commonly used by the practitioners is to visualize the data
set. As reported by the survey participants, open-source tool Jupyter Note-
book3 is a widely used tool for data exploration and visualization. Practitioners
also reported using other commercial data analysis tools (e.g., Kibana4) for
exploratory data analysis and visualization. Practitioners also reported that
they use Apache Spark5 for ML data processing especially in the big data
context.

Another technique used by the developers is to write custom scripts for
data analysis and visualization using descriptive statistics, charts, and graphs.
Custom scripts can also be used to fix for missing and duplicate values, to
identify data types and value range inconsistencies, detection of labelling er-
rors, and for checking data structures or formats. One important point to note
is the fact that many practitioners reported that they do not use specific tools
for data quality analysis and some times do not even check data quality, and
instead rely on assumed quality based on the source of the data. However,
this reliance may fail to identify potential issues in ML data quality and may
consequently lead to poor quality ML models. However, despite of different
commonly used tools and techniques, domain knowledge plays an important
role in the application of tools and techniques and the effectiveness of ML data
quality assurance.

Common Practices in ML Data Processing: One of the key challenges of the
ML data collection and preprocessing is that the data and the necessary pro-
cessing can be domain and problem-specific. Thus, no specific tool may fit all
the problems or data processing requirements. The responses from our survey
participants also reflect the challenges of dealing with these variabilities. Over-
all 76.6% of the participants mentioned that they do not use a very specific
tool for ML data analysis. One of the key reasons is likely to be the above-
mentioned fact that one specific tool is not capable of handling diverse data

3 https://jupyter.org/
4 https://www.elastic.co/kibana
5 https://spark.apache.org/
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analysis requirements and practitioners may use very domain or problem spe-
cific tools and techniques. It can also be explained by the limited availability
of data analysis tools with comprehensive features to cover the processing of
data from diverse domains as only 14.9% of the practitioners have reported to
using specific data analysis tools. Besides, some of the participants reported
that they rely on existing Python libraries and frameworks to develop their
custom data analysis scripts. Thus, it is important to develop necessary tools
for data analysis with comprehensive coverage of data analysis requirements
in diverse problem settings.

Finding 3 : For quality assurance of ML data, practitioners apply dif-
ferent data transformation operations such as noise removal, replace-
ment of missing values, dimensionality reduction, class-balancing and
normalization. ML practitioners also use different tools and techniques
for analysis and visualization of data for better understanding. How-
ever, more than two-third (76.6%) of the developers do not use specific
tools rather use diverse data or problem specific techniques or develop
their own customized solutions.

4.3.4 RQ4: What are the challenges of ML data cleaning?

Cleaning ML data is an important data preprocessing step to remove noise
from the ML dataset. Based on the practitioners’ responses we list the following
challenges in ML data cleaning:

Generalization: Data cleaning like most other tasks in the ML application de-
velopment workflow is hard to generalize as it is usually “geared towards spe-
cific applications”. This is due to the inherent domain- and problem-specific
variations in data, ML frameworks, and algorithms, and even the target appli-
cation platforms. This has also been reflected in the practitioners’ responses as
one respondent mentioned “There is no one-size-fits-all tool and probably will
never be one.”. Another respondent mentioned “...it is practically impossible
to make a general tool, as it depends on the data and the problem at hand.”. So,
“they are not generalizable to different use cases, like text and images.”. One
common practice adopted by the ML developers is to develop or customize
their data cleaning solutions as mentioned by one respondent: “Sometimes
they are not adaptive enough for my problems so I have to write my own.”

Scalability: Another key challenge in data cleaning as reported by the survey
practitioners is the “scalability to big data sets.”. Most tools and techniques
may suffer from the scalability issues. This challenge is intuitively understand-
able particularly because of the rapidly growing volume of ML data. The
data volume may often exceed the processing memory (“scaling to multi ter-
abytes.”). Thus, practitioners need to devise custom techniques to process
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larger data set in small capacity machines under resource constraints. Oth-
erwise, it may impact the data processing cost due to large data processing
resource requirements.

Automation: Some practitioners feel the need for “automated analysis” for
data cleaning and reported that current data cleaning techniques are “poorly
automated”. However, practitioners are aware that “some tasks cannot be au-
tomated...” and recommend that “...rule-based and AI/ML techniques need to
be applied to data cleaning itself ”. This suggests the idea that ML techniques
can potentially be applied to automate the data cleaning tasks. Data regarding
the cleaning techniques applied to existing ML applications are likely to be
leveraged. Due to various diversities in data and problems, it is challenging to
integrate the data cleaning and processing tasks into the ML workflow which
further limits the automation of the data cleaning and other preprocessing
tasks.

Data quality: “Most data is noise (noisy)” and thus cleaning of these types
of data can be costly. Moreover, data can be from different sources and in
different forms and so their levels of quality. For example, text data can be
with different encoding schemes while image data can be in different formats
and quality. When the data is too noisy, the cleaning task becomes costlier and
often impossible given the tools and techniques available. Data from companies
are proprietary data and the structure of the data is likely to be driven by
other business or technical factors than the application of ML.

Lack of standard: Another issue the practitioners commonly face is that there
is no defined standard of “clean-data”. The cleanliness can be relative and
may vary with data, problems, and algorithms. This makes it harder to devise
robust techniques for data cleaning.

Efforts and Costs: Data cleaning can be costly (“It’s very time and labour
intensive”) and thus “requires a lot of efforts”, time and computational re-
source requirements. Also, data processing tasks can be highly iterative and
the continuous expansion of the data may trigger repetitive data processing
incurring high cost.

Lack of Tools and Features: As the data types and the required processing may
differ widely from one problem to another, tools are likely to be with a domain
or problem specific features. This limits the adaptability of tools for diverse
ML data. The lack of features and data dependencies limit the usability of the
data cleaning tools and techniques. The practitioners also mentioned “the high
complexity of use” as a challenge to using data cleaning tools effectively. Also,
“sometimes they (tools) are not adaptive enough for my (specific) problems...”
and this lack of flexibility also limits the use of tools for processing ML data
of diverse characteristics.
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Context and perception differences: From the responses of our survey partici-
pants, we observe a difference of perception on the challenges of data cleaning
between the ML practitioners. This difference of perception is likely due to
the different contexts in which they performed their data cleaning tasks. The
response “Till now, from my usage experience, I didn’t find any limitations on
the tools I have used during my projects.” is thus likely to represent a domain
and context-specific view of the respondent and may or may not apply to the
development contexts of other participating practitioners.

Requirement for domain expertise: ML data processing requires a clear under-
standing of the data, target problem, and algorithms. However, understanding
the structure and semantics of the data from a particular domain may often
require basic and sometimes advanced knowledge in the domain. For example,
to process natural language texts in the mental health domain the ML practi-
tioners are in “... need for expertise in linguistics and mental healthcare.” The
requirement for domain expertise may vary across the domains and the type
of the problem being addressed by the ML application.

Finding 4 : From practitioners’ view, the key challenges in ML data
cleaning approaches are: generalization, scalability, automation, data
quality, lack of standard, required efforts and costs, lack of tools and
tool-features, domain knowledge requirement. From practitioners’ re-
sponses, it is observed that ML developers are sometimes not aware of
the importance or domain-specific challenges in data cleaning.

4.3.5 RQ5: What are the challenges of data labelling faced by the ML
application developers?

Feature labelling is very important as incorrect labelling affects model accu-
racy. However, labelling of features is a challenging task especially when data
volume is large and due to different domain- and problem- specific require-
ments and constraints. Based on the responses from our survey participants,
we identify several key challenges perceived by the ML practitioners as follows:

Data Volume: One of the key challenges in feature labelling reported by the
practitioners is the large volume of data. Labelling commonly involves man-
ual effort and given the increasing volume of ML data, labelling can be very
challenging due to the constraint “large dataset vs limited human resources”.
Because of the data volume, “the amount of work to be done can be overwhelm-
ing”.

Cost: “Labeling the data is quite hectic and time taking process” and thus may
incur “high cash and labor costs”. “Also in some cases, labeling the data also
requires a lot of knowledge of the field to which the data belongs”. However,
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“using experts for labeling is expensive” while “using non-expert for labeling
results in low quality training set”. Again, “it is better to have opinions of
several experts rather than a singleton labeling to avoid biased opinions and
ensure (the) validity of the labeling”. This further increases the cost of the
labelling of the ML dataset.

Required Domain Expertise: Data labelling often requires expert-level domain
knowledge. For example, labelling data in medical imaging such as diabetic
retinopathy requires “a super-skilled workforce, such as doctors to estimate the
level of diabetic retinopathy from images”. However, “domain experts are hard
to reach”. So, the requirements for domain expertise in ML data labelling not
only make the labelling task challenging but also make labelling excessively
expensive. However, the required level of domain expertise may vary across
domains.

Automation: Labelling of ML data is mostly manual or “poorly automated”.
“Manual labeling can be very frustrating and time taking” and thus “label-
ing is slow and expensive”. For automation, standard procedure is necessary.
However, due to diverse variabilities involved, “coming up with a standard an-
notation procedure” is quite challenging. “It is very hard to make a criteria
that can be validated by scripts or other automated tools”. Thus, although “hu-
man annotation is expensive” there is a “lack of tools for annotation”. Also,
for automation, it is necessary to have ground truth for validation. However,
there is also “lack of clear ground truth”.

Domain Dependency: ML Data and the labelling objective may vary widely
across different application domains. As the practitioners claimed, data la-
belling “becomes more difficult is(as) the dataset is domain specific”. Thus,
the data labelling criteria and the required expert-level knowledge is also very
domain specific. For example, “for legal documents, lawyers are best suited
to annotate”. This domain dependency puts a limit on the human labelling
experience to be transferable to other domains.

Biases: One of the key challenges in ML data labelling is the potential bi-
ases or inconsistencies. There are different sources of possible biases or errors
in data labelling. As data labelling is manual in most cases, “discrepancies
among humans” i.e., the differences in knowledge and perception among la-
bellers can introduce labelling biases or inconsistencies due to “subjectivity”
as “everyone has their own point of view”. Again, the annotators may “have
no understanding of the importance of the quality or lack proper training, so
the labeling is inconsistent”.

Data Quality: The quality of the data also has impact on the data labelling.
Too much noises in the data and incompleteness of data due to missing values
can affect the labelling. There can be multiple labels for single data and to
avoid label confusion requires clear labelling guidelines.
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Reliability: Assuring the reliability of the ML data labelling is another chal-
lenging task. Due to the large volume of data, labelling is likely to require
team-efforts. Perception difference among the team members may result in
inconsistent labelling. Again, due to the overwhelming volume of the task
“ML researchers often rely on third-party annotations”. However, as men-
tioned “third party annotators have no understanding of the importance of the
quality or lack proper training, so the labeling is inconsistent”. Again, the prac-
titioners claimed that often “workers are not trust-worthy”, so it is challenging
to make feature labelling reliable. Practitioners recommend cross-validation by
multiple labellers as a remedy for the reliability risk of feature labelling.

Lack of Guidelines: One of the important challenges the practitioners men-
tioned is that there is no comprehensive guidelines on the feature labelling.
Practitioners expressed the “..need to have a strict guideline for labelling”.
However, “it is very hard to make a criteria that can be validated by scripts”
given the variabilities involved in specific ML domain.

Finding 5 : From practitioners’ view, the key challenges in data or
feature labelling are: large data volume, cost, domain expertise require-
ments, automation, domain dependency, biases, data quality and en-
suring labeling reliability. Practitioners also expressed their need for
comprehensive guidelines for feature labeling.

4.3.6 RQ6. What are the common approaches to validating data labelling by
the ML practitioners?

Accuracy of ML data labelling is very important as incorrect labelling can
have adverse effects on ML model performance. It is thus important to know
the current practice of the ML developers for testing the data labelling accu-
racy. Based on the responses of our survey participants, we see some common
practices used by the ML practitioners. As there is a lack of automated tools
for labelling validation and it may require manual checking by domain experts,
Manual Investigation is mentioned by most practitioners (35(71.42%)) as the
approach for label validation. Besides, 22 (44.9%) practitioners reported that
they use automated tools or scripts for testing data labelling accuracy. How-
ever, in many ML domains, the data labelling is not required rather the neural
networks is capable to learn from the data. Some practitioners build a pro-
totype model on the subset of data and evaluate the data labelling accuracy
based on the performance of the prototype model. In both automated and
manual label validation, domain knowledge plays an important role.
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Finding 6 : Manual investigation is reported to be a common approach
for validating feature labelling while some practitioners use tools and
automated scripts. Domain knowledge is important for automated and
manual validation of feature labels.

4.4 Feature Engineering

Feature engineering is one of the key steps in ML workflow unless the feature
is learned automatically from the data such as in deep learning. In our survey,
we asked the practitioners about how they do feature engineering to learn
about the current state of practice. We report on the tools, techniques and
challenges of feature engineering in the following subsections:

4.4.1 RQ7: How do ML practitioners identify class-imbalance in ML data
and how do they ensure class-balance?

In machine learning especially in supervised learning context class imbalance
is a crucial issue as it can severely affect the performance of the ML models.
Thus, it is important to identify the class imbalance and to take the neces-
sary approach for balancing the ML data set regarding different representative
classes. The first step to resolve the class imbalance of the ML data set is to
identify the balancing issue in the first place. ML practitioners have shared
different practices they use to assess and identify class imbalance in the data
set.

Identification of class-imbalance: We list the common approaches for identi-
fying class imbalance as follows:

– Statistical Analysis: One of the commonly used practices to identify class
balance in the ML data set is to statistically analyze the data set. De-
scriptive statistics and the class distribution can indicate how well data is
balanced across different classes.

– Data Visualization: Visualizing data is another approach widely used by the
ML practitioners for testing class balance in the data set. In practitioners’
word, “testing (class balance) can be done by statistical approach or by
visualizing the data on a graph which will show how balanced the data is”.

– Sampling and Analyzing Data Subset: Another approach to testing the
class balance is to analyze randomly sampled subset of data as mentioned
by the practitioners “(we) randomly sample a portion and calculate the
class distribution in it”.

– Manual Verification: Practitioners reported to use manual analysis to check
the balance or distribution of the ML data. However, manually checking
data can be time-consuming, costly and may not be scalable when data
volume is large.
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– Model Performance: Some practitioners mentioned a kind of reactive ap-
proach to testing class balance. Here, instead of balancing data proactively
before training, their approach is to observe the impact of the imbalance
on the model first then balance data if necessary. As mentioned by one
of the practitioners where s/he first builds “baseline models like linear re-
gression and logistic regression to see how good/bad the imbalance affects
the predictions”. Similarly, another practitioner mentioned the way as to
“evaluate sensitivity of the model at the end on generated data”. Some
practitioners also reported measuring model performance based on k-fold
cross-validation to assess the impact of class imbalance.

In some ML domains, no explicit data labelling is necessary or the data is
naturally imbalanced depending on the domain and thus the class imbalance
issue may not apply to those contexts, and it has also been mentioned by
different practitioners.

Techniques for class-balancing: Based on the responses from the practitioners,
we list some commonly used techniques for balancing data set as follows:

– Data Re-sampling: The resampling of data is a commonly used technique
to balance the ML dataset. To balance data, either minority class can be
up-sampled or the majority class can be down-sampled. The balanced data
then can be used for ML models. Practitioners reported the use of tools
like SMOTE [16] or ADASYN [17].

– Stratification: Practitioners also reported using stratification techniques to
understand and balance the data. A practitioner stated that: “we write
our own stratification solutions, based on the descriptive analysis”. Prac-
titioners also mentioned applying stratified split of training and test data
to reduce the impacts of class imbalance. Also, one of the practitioners
mentioned data augmentation, stating that “...will utilize data augmen-
tation methods if class balancing does not satisfy requirements” without
specifying specific augmentation technique.

The requirements and the techniques for balancing data are likely to depend
on the particular ML context regarding the problem domain, the data and the
ML algorithms.

Finding 7 : Practitioners reported to use statistical analysis, data
visualization, analyzing randomly sampled data, manual verification,
and measuring model performance to test class balancing of labelled
data. To ensure class-balance, practitioners commonly perform data re-
sampling (up or down sampling) and stratification of distribution for
class balancing.
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4.4.2 RQ8: What are the feature engineering techniques and tools commonly
used by ML developers?

Based on the responses from the participants, we identify the following tech-
niques and tools for feature engineering commonly used by the ML practition-
ers:

Manual analysis: Based on the data and the ML problem domain, features
may need to be “hand crafted”. As one practitioner mentioned “I need to
learn about how the data is generated and formulate the features that will be
useful”.

Custom Programming: Feature for ML models are likely to be problem de-
pendant, thus ML practitioners decide on features based on their domain
knowledge and devise custom techniques for feature extraction as reflected in
the response “Domain knowledge remains my favorite tool, I understand the
problem and read the current research to devise the best features”. Also, user-
written custom scripts in addition to existing libraries and tools can be used
for feature extraction as mentioned by practitioners; “we use custom scripts
and functions in addition to NLP libraries like nltk, spacy and tensorflow”.

Using Libraries and Frameworks: One widely used practice among the ML de-
velopers is to develop feature extraction functionalities based on the available
libraries and frameworks. Based on the responses of the survey participants,
scikit-learn is a very widely used ML library for feature extraction. Besides,
some other frequently used Python libraries are pandas, numpy, scipy, and
networkx while for natural language processing (NLP) tasks nltk and spacy
are among the widely used python libraries. R and Matlab based libraries
are also used by the practitioners for ML feature extraction. For computer
vision domain practitioners reported to using CNN or OpenCV for image fea-
ture extraction. The practitioners also reported that they use frameworks like
TensorFlow and PyTorch.

Using Feature Engineering Tools: Some practitioners have reported the use of
available tools for feature extraction. For example, one respondent mentioned
the use of Data-Miner6 and then Featuretools7 for feature extraction. Some
other tools as reported by the participating practitioners are DataVec, Weka,
XGBoost for feature importance, PCA and Fourier transformation for dimen-
sion reduction. However, the use and suitability of tools vary with the problem
domain and the data.

6 https://data-miner.io/
7 https://www.featuretools.com/
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No Feature Engineering: Practitioners using deep learning based techniques
do not require specific feature extraction technique as the network is expected
to learn from the data.

Finding 8 : Based on the practitioners’ perception, the commonly used
techniques for feature extraction are manual analysis, custom program-
ming using existing libraries and frameworks for data processing, and
Using available feature engineering tools. However, deep learning tech-
niques may learn from the data without explicit feature engineering.

4.4.3 RQ9: What are the common limitations of the existing feature
engineering tools and techniques?

Although tools and methods for feature extraction are very useful for ML
practitioners, there are a limited number of tools available. Existing tools also
do not cover all diverse requirements in feature engineering. The participating
ML practitioners have mentioned different limitations of the existing feature
engineering tools and techniques as follows:

Generalization: Generalization is one of the key limitations of the existing
feature extraction methods and tools since “every problem is different”. And
“for most applications, the shape of the data that has to be input to the model
is highly specific to the internal company data that we cannot use out of box
tools to help us easily automate feature engineering”. So, due to the inherent
variabilities in ML problems, data and algorithms, it is very challenging for
any feature engineering tool to generalize for diverse problem contexts.

Scalability: Another limitation of the feature extraction tools pointed out by
the survey participants is that “they (tools) are not scalable” and thus “hard to
visualize quickly and efficiently on large data sets”. They also mentioned that
“the current feature engineering tools is that they are not well parallelized, and
when other parallelization libraries are introduced like multi-processing many
problems arise causing me to edit the library and fundamentally having to
change the code.”. This affects the performance and limits the application of
tools especially for processing larger-scale data.

Automation: Practitioners also mentioned that feature engineering tools “are
not automated enough” and thus there is a “need for supervision”. And, again
“automated feature engineering often comes short to domain knowledge, au-
tomating the latter is a difficult problem”. Also, as the feature engineering
tasks are likely to be problem dependent and “are mainly limited to tasks and
types of data sets”, thus for tools it is “very difficult to fine-tune manually”
for diverse problems, data, and algorithms.
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Domain Knowledge Requirements: Like other phases of ML workflow, feature
engineering requires “too much expert knowledge” in the associated problem
domain. Also, “some problems require domain knowledge, that is difficult to
translate in a general way to an open-source tool”. The requirements for do-
main knowledge limit the usability of the tools or methods to be used by
experts only in a very specific domain.

Adaptability: As mentioned, feature engineering for ML applications is likely
to be problem and data specific. “Sometimes (the tools are) not exactly what
you (practitioners) look for”. The tools for feature engineering is thus “limited
to tasks and types of data sets”. Tools designed for a specific problem and
data set or types of data may not be easily adapted to other problems or data.
Feature engineering tools are not flexible enough “to fine-tune” for a specific
problem and data sets or there are “difficulties with setting specific properties”
to accommodate new data sets. Again, feature engineering tools are usually
equipped with a static set of features and “they do not learn, it’s a fixed set of
algorithms” to exhibits robustness to diverse data and problems. As the tools
are too tied to the problem domain and data types they may not “scale, (and)
guarantee performance on different platforms”.

Usability: Another important issue with the feature engineering tools or meth-
ods is the lack of “simplicity”. This may result in poor usability, leading to slow
“learning curve” and may require expert knowledge in the domain. There is
also a lack of “versatility and good documentation” to use the tools effectively.

Feature Evaluation: It is also important but difficult to evaluate the quality or
performance of the resulting features from a feature engineering tool. “There
is no integrated solution to test how the features perform with a given set of
model architectures. Most of the time, we still need to do this manually (with
grid search or Bayesian optimization)”.

The practitioners also mentioned diversity in data types, adjusting too
many tools or method parameters, and limitation of implementation language
as some of the challenges in feature engineering. One practitioner mentioned
the translation of user behaviours as an important challenge arguing that
“User behavior is inherently difficult to encode in any feature space, but it’s
the domain of interest for much of anomaly detection in cyber security”. The
practitioner also expressed his expectation as a ML practitioner as “I’d like to
see more industry-ready research in this field”.

It is also interesting that the perception of the limitations of the feature
processing tools varies widely among the practitioners. This variation is likely
due to the differences in ML application development contexts of the prac-
titioners or might also be due to the lack of awareness of the practitioners
regarding the needs and challenges in different ML development scenarios. In
one hand, while we have above-listed limitations pointed out by many practi-
tioners, some other practitioners, on the other hand, do not see any limitations
of the existing tools mentioning “None (no limitation), they are great” or “I
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didn’t see real problems” or even “no idea”. Thus, it is important to iden-
tify domain-specific challenges in feature processing to make the practitioners
aware of the challenges within and beyond their domain of ML expertise.

Finding 9 : As outlined by practitioners, the common limitations of
the existing feature engineering tools and methods include general-
ization, scalability, automation, domain knowledge requirement, and
adaptability. It is also challenging to evaluate the quality of features
and the performance of the feature processing tools and techniques.

4.4.4 RQ10: What is the state-of-the-practice in feature quality assessment in
ML application development?

Once features for ML is extracted, it is important to validate the quality of
the features since a poor feature quality is likely to affect the performance of
the model negatively. The survey participants have shared their practices for
assessing the feature quality. Based on the responses we observe the following
common practices for feature quality assessment:

Statistical Analysis and Visualization: One common practice mentioned by
the ML practitioners for feature validation is that they apply different statis-
tical analysis on the features. Statistical techniques include computing corre-
lation matrix of the feature columns, measuring mutual information, variance,
and performing statistical tests to understand the distribution and relation-
ships among different features. ML practitioners also assess the feature quality
“through visualization” of the feature. Practitioners also validate feature qual-
ity by “estimating similarities between feature vectors to make sure they stay
consistent”.

Feature validation by Model Performance: Instead of proactive assessment of
feature quality before ML model training, many practitioners rely on resulting
model performance. Practitioners “train model(s) and test them” as “mostly
a good enough model justifies the data”. It is based on the strategy that “we
(practitioners) don’t care if they (features) are representative as long as the
downstream performance is good”. Commonly used model performance met-
rics are accuracy, precision, recall, F-score measured “by running accuracy
tests on the model with respect to the validation set”. The validation can also
be done through the k-fold cross-validation of the model. Before training the
models on the whole data set, one approach that practitioners use is to build a
prototype model “by running machine learning algorithms on subsets and com-
paring performance” to estimate model performance and the feature quality.
Another approach for feature evaluation is by “running baseline algorithms
such as Logistic Regression and see how they bare on each set of features”.
Practitioners may also “compare performance of multiple models” to evaluate
corresponding feature sets.
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Feature Validation by Feature Selection: Another approach the practitioners
reported for feature validation is that individual feature is selected incremen-
tally (forward selection) for the model and the model performance is observed
to decide on the inclusion or exclusion of the feature. Alternatively, modeling
can begin with selecting all the features and then gradually eliminating (back-
ward elimination) features based on the resulting model performance, to find
the best feature subset. Given that the number of features can be high and the
training process can be costly, one practitioner pointed out the limitation that
“since my own capacities are limited, I would use forward/backward selection
if I can rapidly train a model”.

Domain Knowledge Based Feature Validation: Practitioners select and vali-
date features based on their domain knowledge. One practitioner mentioned
that “I would rely on my good judgment. Would that feature help me, as a
human, make a prediction.”. Similarly, another practitioner presented the im-
portance of domain knowledge in feature selection as “Imagine that you are
the model, and ask yourself ”Am I able to predict the outcome given only these
information only?” If the answer is yes, the features represent the character-
istics of the dataset”. The domain knowledge can also be useful in the manual
inspection of the features and the model performance.

No Feature Validation: Depending on the domain and the types of the prob-
lem and the data, practitioners may not always need to validate features. For
example, one practitioner from NLP domain mentioned “I have used the tra-
ditional feature extraction methods and have never looked to validate them”.
Also, in deep learning, explicit feature processing and validation may not al-
ways be required.

Besides, practitioners also adopt domain-specific techniques for validating
feature quality. For example, in cases of generated (synthetic) features, one way
to evaluate generated feature is to measure “the distance of the artificially gen-
erated samples and the real distribution”. Some practitioners also reported to
use “model interpretability/explainability (such as LIME8, SHAP9)” to assess
the model and so the quality of the features used in those models.

Finding 10 : The approaches practitioners commonly use for the as-
sessment and validation of features are: statistical analysis, visualiza-
tion, evaluating the resulting model performance, and incremental fea-
ture selection. Besides, practitioners also depend on knowledge and
expertise in the domain to evaluate features.

8 https://github.com/marcotcr/lime
9 https://github.com/slundberg/shap
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4.4.5 RQ11: What are the common practices for feature selection in ML
application development?

Once the feature is extracted from the data, one key task is to select the
suitable subset of the features that best represent the data characteristics.
The practitioners were asked to share their adopted practice in feature se-
lection. As in other phases of ML application development workflow, domain
knowledge plays an important role in feature selection. Around 75.5% (37/49)
of the practitioners reported that their feature selection is based on the do-
main knowledge. Besides, 63.26%(31/49) of the participating ML practitioners
mentioned that they do feature selection based on the statistical analysis and
visualization of data and feature correlation. Also, 51.02%(25/49) practitioners
reported the use of automated feature selection tools and techniques. Among
the practitioners, 40.8%(20/49) mentioned that they take an incremental ap-
proach to add one feature at a time and evaluate the model performance for
selecting that particular feature. Alternatively, all features can be added and
then some of them removed gradually to find the best subset of features. It is
to be noted that the above counts of practitioners are not mutually exclusive,
rather practitioners use the feature selection approaches based on the specific
context of the problem and the associated data.

Finding 11 : The majority of the practitioners (75.5%) use domain
knowledge for feature selection. Besides, statistical analysis and visu-
alization, using automated tools, and incremental selection of features
are the common techniques adopted by the ML practitioners for feature
selection.

4.5 Model Building

Building ML models comprises of implementation and training of the ML
models. Models are trained on the training data after implementation until
certain quality is achieved by the models measured against selected quality
metrics. We discuss the common practices in ML model implementation and
testing as follows:

4.5.1 RQ12: What are the practices for ML model implementation commonly
adopted by the practitioners?

There are a number of popular libraries and frameworks for model implemen-
tation in different programming languages, supporting different application
domains and platforms. Based on our survey responses, we observe that the
implementation of ML models is primarily based on existing ML libraries and
frameworks. About 93.18%(41/44) of ML developers reported that they de-
pend on ML libraries and frameworks for implementing ML models. About
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one-third (31.81% (14/44)) of ML practitioners reportedly implement their
ML model training code from scratch than relying solely on the ML libraries.
Practitioners also mentioned using their own custom auto-ML system for ML
model training. It is to be noted that the above distributions are not mutually
exclusive and developers are likely to adopt implementation strategies that
best fit their ML development contexts.

Finding 12 : ML developers primarily (93.18%) depend on the existing
libraries and frameworks for implementing ML models while roughly
one-third of the practitioners write code from scratch for model imple-
mentation. The implementation choice is influenced by a specific ML
development context.

4.5.2 RQ13: What is the state-of-the-practice for ML model implementation
testing by ML practitioners?

As mentioned earlier, one of the important and challenging task for ML model
implementation is to test the implementation. Given the expected challenges,
we were particularly interested in knowing the state-of-practices from the ML
developers; i.e., how they validate their ML model implementation in real-
world development scenarios. Based on the responses of the practitioners we
identify the following practices that the ML developers adopt for testing ML
model implementations:

Performance-based testing: One common practice that the practitioners fol-
low to test ML model implementation is to evaluate the model performance.
The performance is tested based on the known validation set. Practitioners
test models “mainly through measuring the performance on the test dataset,
or through cross-validation”. Based on the responses of the practitioners, we
observe the following practices commonly used for performance-based testing
of ML models:

– Sanity checks: Developers do some sanity checks by inference on random
data samples, checking for corner-cases or overfitting the models on small
sample data subset. A quick visualization of output i.e.,“metrics, train/test
loss curves, etc.” can also be useful. The models can be tested on “on simple
crafted data” or using “small dataset of “known cases”.

– Performance on benchmark data sets: One approach to test ML imple-
mentation is to measure performance on some well-know benchmark data
set. For example, one participant suggested the testing of ML models to
be done “by running on classical data sets such Iris or Boston and infer
correctness based on the results”. Thus, domain-specific data sets can be
used for the evaluation of ML model implementation.

– Performance compared to baseline models: A comparison of model perfor-
mance with the known baseline model can also be used for model testing.
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One practitioner suggested to “compare its accuracy to the simple baseline
model that you are sure you cannot mess up. If it’s better or the same then
you are probably implementing it correctly...”.

– Cross-model testing : ML developers also compare model performance with
other models of different configurations to identify possible issues. Prac-
titioners do this “by monitoring the model parameters and also the model
prediction errors”.

– Cross-algorithm testing : Developers can also test the model by comparing
model performance with models based on different other algorithms. Prac-
titioners “check results compared to other methods, observe the prediction”
to verify model implementation.

– Cross-language testing : Practitioners also reported to compare models im-
plemented in different languages for testing. The strategy is to “established
examples, area-specific toy examples, sometimes compare with implemen-
tation in another language” or “compare with other libraries”.

– Cross-platform testing : One of the strategies the ML developers take to test
model implementation is to compare the model performance in different
platforms or by comparing “against one or more other frameworks”.

Visualization: Another technique the practitioners use to test model is by us-
ing the visualization of model output (e.g., accuracy) and other model states
(e.g., loss) or parameters. In one practitioner’s word “I have found that vi-
sualizing either the output or the internal state of a neural network, greatly
improves my bug-finding capacity”. Also, another practitioner mentioned “I
can test if the neural network architecture definition is correct generating a
visualization of architecture using Tensorflow, and check if it’s logically cor-
rect”.

Use available tools and frameworks: Practitioners also use features available in
the existing tools and frameworks i.e.,“through test methods provided with the
framework” for debugging and testing ML model implementation. Commonly
it is done by “debugging and checking results”, for example, using “unit tests
in C#”. An example approach as mentioned by one ML practitioner is “in
case of python, I will use PDB(python debugger). Then test it over the known
outcomes and if they are not correct or efficient and I will check the algorithm
I am using and the outputs at every step of that model”. Some practitioners
write suitable unit-tests for ML models or test “against existing frameworks”.
Some practitioners use interactive interface of Jupyter notebook and examine
“incremental results from the different code blocks”.

Domain knowledge based validation: Similar to other activities of ML appli-
cation development, domain knowledge plays an important role in testing ML
code. Based on the domain expertise, practitioners can perform visual or man-
ual inspection of model behavior based on known cases or crafted test data.
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Finding 13 : The majority of the developers depend on the existing
ML libraries and frameworks for implementing ML models than writing
code from scratch. Practitioners test the model implementation by ob-
serving performance, visualization of model structure or the outcomes,
testing or debugging code using existing tools. Domain knowledge plays
an important role in testing ML implementation.

4.6 RQ14: What are the common symptoms that practitioners use to detect
defects in an ML implementation?

It is known that the identification of defects in ML code is harder because
the outcomes of ML applications are generally stochastic in nature. Thus we
are interested to know how ML practitioners detect defects in their ML code.
The shared knowledge of the practitioners will not only be useful to the ML
community but also help in identifying the challenges practitioners face and the
types of support they need for defect identification in ML code. The symptoms
can be intuitive like “fail to compile” to some nontrivial defects symptoms.
Based on the practitioners’ experience shared in this survey, we observe the
following practices commonly used by the ML developers to identify defect’s
symptoms:

Performance based symptoms: ML practitioners emphasize a lot on the model
behaviour or performance as the defect symptoms for ML models. ML develop-
ers frequently consider the following performance-based symptoms for defects
in ML code.

– Accuracy: In the practitioners’ view, model accuracy is a strong indicator
of the correctness of the implementation. In a practitioner’s word, “Highly
unlikely accuracy for the given task, and extremely low accuracy for the
given task, often when encountering these results there would be defects in
the implementation whether it is minor or major”. So, the “weird results”
i.e., “extremes, too high accuracy, too low accuracy is considered to be an
indicator of defects. Also, an abrupt change in model accuracy such as
“huge decrease in performance” is also a sign of model defects.

– Consistency: Inconsistency in model performance is likely to be a symptom
of defects in the ML model. The “inconsistency of results, over-sensitivity”
i.e., “non-deterministic results” indicate the likely presence of defects in
the ML code.

– Generalization: Another symptom of defects in ML implementation is the
poor generalization i.e., model exhibits “decay in performance on unseen
data”. Models may have “wrong output,(and) limited possibilities to gener-
alize” and may also show “discrepancies between offline and online bench-
marks” in presence of defects.
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– Bias: ML models may also exhibit “high bias with respect to the labels” in
presence of defects. Such “high bias or high precision with low bias” might
be an indication of defects in the model. This bias can originate from both
data and the code.

Training behaviors: Some symptoms of defects can surface during model train-
ing. We list some of the defects symptoms observed during training of ML
models as follows:

– Convergence: In presence of defects, ML models may fail to converge. The
model may lead to “overfitting, underfitting, and volatile performance”.

– Speed: The models may be too slow in training and inference or can be too
fast with high accuracies. These unexpected model behaviours can indicate
potential defects.

– Value: Models may have unexpected values (types or range of values) for
input, weights or parameters during training. For example, one indication
can be “appearance of NaNs during training”. This can indicate potential
defects in the model implementation.

Model output: Erroneous model output may also indicate presence of defects.
Practitioners reported the following defect symptoms related to model output:

– Value: Model can produce wrong output in terms of values and range of
values indicating defects in the model.

– Distribution: The distribution of model output can also be an indicator of
the model defects. If the model output is skewed to some specific class or
values, there might be defects or bias in the implemented model.

However, the symptoms of defects in ML code may also “depend on the prob-
lem” and can be hard to fit in specific symptoms. The intrinsic challenges in
identifying defects in ML code have also been reflected in some of the prac-
titioners’ lack of awareness of the identified symptoms; mentioning that they
have “no idea”, or they are “not sure” or, that defects symptoms are “un-
known”. This shows the importance of providing ML practitioners with more
(tool) support to help them detect defects in their code.

Practitioners use different tools and techniques for detecting bugs in ML
code. Some practitioners reported that they use Pytest for testing ML code in
Python. Based on the ML frameworks, the test techniques vary widely. Some
practitioners simply use logging or debugging to identify bugs. Interestingly,
many practitioners either do not use any particular tool for ML testing while
some practitioners are not even aware of such events. Some other tools and
frameworks such as: Python debugger available with the IDE like PyCharm
can be handy for looking for bugs.
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Finding 14 : Extreme (too good or too bad) model performance, incon-
sistency, generalizability, and bias in model outcomes are the common
symptoms of defects in ML code. Besides, poor model convergence,
unusual training and inference time, and output values and their dis-
tribution can be important indicators of the presence of defects.

4.6.1 RQ15: What are the practitioners perceived challenges of testing ML
application?

Testing the correctness of models is a challenging task. The characteristics of
the ML Models (algorithms) and different quality requirements of ML data
make the testing of ML models more difficult. Based on the developers’ per-
ception of the challenges in ML model testing, we list the following challenges
in ML model testing:

Black-box nature of ML models: ML models are “black-box in nature” [10]
meaning that it is quite obscure how the model perform a particular task.
For the same reason, it is also hard to detect or explain why a model is not
performing as expected. As models are black-box “I (developer) can’t tweak the
internals” to identify the issues in the model. Again, “since they are mostly
black boxes, it’s hard to make guarantees on yet unseen data”. The opaque
nature of the models usually does not allow the developer to observe the
internal states of the models such as “gradient inspection” during training.
The practitioners feel the need for techniques or tools to make the model
more transparent. In practitioner’s word “... it would be awesome some kind
of software or library that checks your gradients and tell if there is something
strange”.

Model’s robustness to errors: Another key challenge to test ML model is that
ML models can exhibit robustness to errors by producing correct results in
some cases i.e., “the model is wrong, but the result is not”. Similarly, “a
wrong implementation sometimes achieves similar performance (to the cor-
rect ones), and the bug cannot be found until we introduce new features”. Such
wrong implementation “without actual effect in results while convincing my-
self(developer) that it works” can be quite tricky for the ML developers to
identify and fix.

Data Quality: Data plays an important role in model quality. Despite the
correct implementation, model may perform poorly due to issues in the dataset
and that can be hard to detect. Based on the practitioners’ responses, we
observe the following challenges in testing ML models related to the quality
of data:

– Adequacy: ML models need to be trained on an adequate number of input
data to achieve high accuracy. “Absence of sufficient correctly labeled data”
can hinder the correctness of the model and consequently the performance.
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– Correctness: One key concern in ensuring the correctness of ML models is
“having a bad model due to bad data: makes it very difficult to detect and
expensive to solve”.

– Data Bias: Biases in the data can lead to poor quality ML models. There
might be intentional or unintentional or even domain-specific biases in the
data set. For example, “in the medical industry, data bias is hard to get
over, and typically requires vast amounts of augmentation”. Unbalanced
distribution of data samples in the training, testing and validation data
set can embed bias in the model leading to biased models.

– Labeling accuracy: Incorrectly labelled data is likely to result in poor qual-
ity models. Thus it is important to ensure “the fidelity of the labels” be-
cause the “lack of (a) good labelled data sets” may adversely affect the
model accuracies.

– Distribution: “Testing data sometimes does not belong to the distribution
of the training data on which the model is trained so we might not get good
score”. ML data also need “to represent the real distributions faithfully”.
Otherwise, this can lead to incorrect models which can be hard to identify
and fix.

– Divergence: One important challenge for the ML model is that the charac-
teristics of the data can evolve over time. Thus, the issues in the models may
be simply “a data problem”. For the models to be correct, it is important
“how well does the data available during training reflect true operational
data, and how long until the nature of the operational data diverges from
your original data and assumptions”. It is challenging to deal with this
divergence in ML data.

Volatile performance: The performance of the ML models can be affected by
diverse factors involving both data and the code. “Sometimes there are dis-
crepancies between test and validation sets and unseen data”. Again “some-
times the models do not meet the predetermined correctness criteria or they
perform very well in the train test split but when introduced to the validation
set it under-performs”. The cause of low performance can be challenging to
identify.

Domain Expertise: Testing ML models may require adequate domain knowl-
edge. Thus, “lack of domain knowledge” can make ML testing a difficult task.
Also, another challenge is the availability of domain experts and also to ensure
the availability and “access to tools a domain expert can use”.

Cost: Testing ML models for correctness and performance can be costly re-
garding the time and efforts. Phases of the ML application development are
usually iterative and thus “reaching a working model is very time consuming”
because “iteration takes too much time”.
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Lack of concrete methodology: Practitioners are also in lack of appropriate
techniques and methodologies to test ML models. In a developer’s view “...
there is, to my knowledge, no decisive way to ensure correctness but to leverage
more data for testing predictions”. “You (practitioners) only have accuracy
and prediction plot to check the correctness. Usually, the data transformation
pipeline is difficult to implement so the bug can be from data, even before the
model. So you(practitioners) need to identify exactly where is the cause of low
accuracy”.

Interpretability or explainability: Another key challenge in testing ML models
is that we can merely explain why and how a model is working or why it is
not working. To test ML models, it is hard to “knowing what you (developers)
are evaluating” i.e.,“understanding the exact mathematical process behind the
algorithms”.

Finding 15 : The black-box nature of the ML models, robustness to
errors, and the characteristics of the data including adequacy, correct-
ness, bias, labelling accuracy, distribution and divergence of the data
pose key challenges in testing ML applications. Diverse performance
impacting factors and the lack of concrete testing techniques also pose
challenges in ML testing. Requirements for domain expertise, time and
efforts and lack of explainability of ML models also hinder ML testing.

4.7 Model Deployment and Management

Once trained and tested ML models are available, models need to be inte-
grated into the target application for deployment. Also, deployed models need
to be monitored and manged to maintain the expected performance of the
application, and adapted to changes over time.

4.7.1 RQ16: What are the developers-perceived challenges of testing ML
model deployment?

It is important to test models after deployment to ensure that the model is
integrated as expected with other components of the ML applications and
the target software ecosystem. However, like the pre-deployment testing of
models, there are some challenges to post-deployment testing. Based on the
perceptions shared by the survey participants, we list the following challenges
for testing ML model deployment:

Test Data: The quality of test data is an important challenge to test ML
model deployment. Practitioners identify the following challenges in testing
model deployment:
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– Data Availability: For post-deployment testing, adequate real data needs
to be available covering possible usage scenarios including corner cases.
However, there might be a “lack of ground truth for real life new data”.
While in some cases it might be challenging to have adequate test data,
“huge amount of (test) data” can also be a challenge to deal with.

– Data labelling: As in the training phase, test data requires correct labelling
for post-deployment testing. However, “obtaining correctly labelled data”
can be challenging.

– Data format: Besides the availability of correctly labelled data, another
challenge is “making sure the data coming into the model is of the right
format”.

Performance: One key requirement is that the deployed ML models must
perform as expected in production. The practitioners pointed out the following
challenges to ensure the performance of the deployed model:

– Functional accuracy: One of the primary requirements that a deployed
model must satisfy is the desired level of functional accuracy. The accu-
racy requirement may “depend(s) on applications, some applications re-
quire very high accuracy, while for others 60% is enough”.

– Generalizability: Another challenge in post-deployment model testing is to
“making sure the model is generalizable and its behavior is in control”. The
deployed model is expected to be not only generalizable to unseen data,
but also exhibit “robustness to adversarial examples”.

– Performance monitoring: The deployed models need to be evaluated over
a reasonable period for post-deployment testing. However, “keeping track
of predictions (model performance)” can have additional overhead. Also,
“constantly having to have human oversight” can be challenging and costly.

– Performance measures: Sometimes the interpretation of the performance
metrics may differ and “the most appropriate result metrics may or may not
be understood by all the teams”. For example, “accuracy they understand
and F1-Score is what matters”.

Resource requirements: The deployed ML application should have optimum
requirements for resources such as processing powers and memories. The mod-
els should be tested against these requirements. “Assessing the accuracy is not
hard but It’s hard to measure resource usage in mobile phones. It’s difficult be-
cause in the phone we don’t have the same libraries and tools we can use to
develop like on PC”.

System Complexity: Complexities of the model, target application architec-
ture, and the deployment environment can pose challenges to testing deployed
models. For example, “due to the model complexity, it is hard to understand
where the problem is from” and to devise test cases for all possible scenarios.
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Platform diversity: Another important challenge in post-deployment testing of
ML applications is that model development or training platforms can be differ-
ent. For example “deployment hardware is different from (the) hardware used
for training”. Models trained and tested on different hardware and software
environments may not work on a mobile platform. And “it’s difficult because
in the phone we don’t have the same libraries and tools we can use to develop
like on PC”. “The big challenge is a method to deploy ML models through a
single framework regardless of the used library (PyTorch, Tensorflow, etc.)”
to overcome the complexities due to platform differences.

Adaptability: The target environment and data characteristics are likely to
evolve over time. However, it is challenging to “integrating new cases of failure
into the pipeline” to ensure the adaptability of the deployed ML application.

User satisfaction: The success of the deployment does not include satisfying
the functional or performance requirements but also how it is satisfying the
target users. However, challenges remain in “determining the value of one set
of (the) user over another. If 60% of users dislike the current implementa-
tion, should we change it to satisfy their needs but put the other 40% in a
place of discomfort?”. The deployment testing thus should consider the user
acceptance of the application or model deployed.

Besides, the practitioners claim that domain knowledge requirements, as-
sociated time and costs, complexities in writing suitable tests, and lack of
interpretability or explainability can also pose challenges in post-deployment
testing as in other phases of ML application development.

Finding 16 : The key challenges in testing the deployment of ML
models are associated with the data quality (availability, format, and
labeling accuracy) and the model performance evaluation (functional
accuracy, generalizability, performance tracking, and metrics). More-
over, model complexity, resource requirements, target platform diver-
sity, adaptability, and overall user acceptance pose challenges to post-
deployment evaluation and testing of ML applications.

4.7.2 RQ17: What are the factors that ML developers commonly focus on
during ML model management?

Post-deployment model maintenance is important in the ML application de-
velopment life cycle. In this phase, models need to be monitored for different
quality parameters, and model maintenance activities need to be initiated if the
model deviates from the performance requirements. About 77.5% practition-
ers have mentioned that they frequently monitor ML models after deployment.
ML developers employ different testing techniques depending on the context
of the specific application. Common model maintenance activities include ob-
serving the performance, resource requirements, and robustness of the models
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in real-world usage scenarios. The models are deployed on different software
and hardware platforms. For example, the models can be hosted on some local
server or can be deployed on the cloud. These diversities in the deployment
environment are likely to have an impact not only on the performance but also
on the maintenance of the models.

Monitoring and maintenance of deployed models are essential in ML appli-
cation maintenance. Since ML models are data-driven, deployed models need
to be monitored because the model performance can be affected due to signif-
icant changes in the data over time. To have insights into the practices that
ML developers commonly adopt in managing ML applications, we categorize
the common parameters considered by the practitioners for post-deployment
model management as follows:

Performance: Monitoring performance is a key task in ML model manage-
ment. As model performance can drop significantly due to changes in data
characteristics, models need to be monitored to detect performance deviation.
As per the practitioners’ responses, the following performance factors are con-
sidered for post-deployment monitoring.

– Model accuracy: One key performance measure is accuracy. In the mainte-
nance phase, models need to be monitored for model accuracy. This helps
in the detection of performance deterioration due to changes in data over
time. Model accuracies are measured against predefined metrics similar
to the training and testing phases. “Changing in accuracy” should be ad-
dressed accordingly such as retraining the models. The metrics for accuracy
may vary depending on the model type and the domains. Models are also
evaluated with respect to the ranking quality in recommendations such
as “NDCG (Normalized Discounted Cumulative Gain)” commonly used in
information retrieval.

– Resource consumption: Another performance factor that the practitioners
reported to give importance to is the resource consumption by the deployed
application such as CPU, GPU, memory, and power. The models may
require optimization for resource consumption to ensure a cost-performance
trade-off.

– Inference latency: Response time for inference by the models i.e., the in-
ference latency is an important parameter to watch for. Models require
to be evaluated for the “latency for predictions” to ensure that “speed is
reasonable”.

– Robustness: The models need to be monitored for unseen data or corner
cases to evaluate how robust the model is in dealing with new data in a
real environment.

Business gains: In the post-deployment phase, ML models or applications also
need to be evaluated regarding different business metrics. Thus, ML applica-
tions are evaluated regarding different “business metrics such as click-through
rates, conversion rates, (and) revenues”. There are also other business factors
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such as “customer retention”. Necessary steps are essentials if the ML model
fails to meet the business goals.

User Feedback: It is also important to evaluate ML applications based on
the feedback of real users. “Response from users and their feedback in how it
could be improved or changed” using the “end-user perspective” is important
to improve the quality of ML applications.

However, the prioritization of factors to monitor during model maintenance
can depend on the associated ML applications.

Finding 17 : From practitioners’ view, the factors that need to be mon-
itored for deployed models are primarily the performance (accuracy,
latency, robustness, and resource consumption), business parameters
(e.g., revenues, customer conversion or retention rate, click-through
rates), and the overall user acceptance of the ML applications.

5 Analysis and Discussion

In this paper, we have presented insights into state-of-the-practice and key
challenges in different phases of ML application development based on the
shared experiences of ML practitioners. Our survey participants are from di-
verse backgrounds with a wide array of skills and experience in different do-
mains of ML application development. This is likely to ensure comprehensive
reflections of the practices and challenges in machine learning in practice. In
the following subsections we discuss our findings with respect to overall trends
in ML application development and the practices and challenges in the four
phases of the ML application development life cycle we covered in our survey:

5.1 Trends in ML Application Development

We presented recent trends in ML application development in Finding 1. As
mentioned by the practitioners, the recent trend in developing ML applications
is heavily focused on developing Business Intelligence (BI) applications. In ad-
dition to business and e-commerce, the application of AI/ML includes health-
care, security, document analysis, entertainment, and embracing rapidly other
areas of human life. For ML application development, data plays a key role.
Based on the practices reported by the practitioners, open-source is the lead-
ing source of ML data while private company data and data from third-party
clients are also major sources of ML data. Like open-source datasets, different
open-source ML libraries and frameworks (e.g., TensorFlow, PyTorch, Keras,
scikit-learn) are the leading frameworks as reflected in the recent trends in ML
application development. However, the choice of the data, ML algorithms and
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ML frameworks are mostly dependent upon the problems and application do-
mains and require necessary domain knowledge for the successful development
of ML applications.

5.2 Data Collection and Preprocessing

ML models are data-driven and thus the quality and adequacy of data are
important for developing ML applications. However, ensuring the availability
of reliable data for ML can be challenging. We observe that open-source data
is the most prevalent source for machine learning data covering about 75% of
the data. The quality of ML data is very important for the performance of
the resulting ML model. Practitioners have pointed out different key quality
characteristics of the ML data (Finding 2 ). The key attributes of ML data that
the practitioners have emphasized include how well the data represent features
for machine learning and also the adequacy and diversity; meaning enough data
volume and having representations from all classes or categories. ML data also
needs to be complete and accurately labeled for ML algorithms. Data needs
to be consistent regarding the structure, accuracy, and quality of information.
Besides, ML data needs to be reliable and to be verified in multiple phases
because the consequence of data error can be extremely adverse in cases such
as health- and safety-critical systems. Besides, ML data should have if possible
low noise and bias, with balanced distribution across data classes, to achieve
high-performance models.

Practitioners apply different data transformation operations such as noise
removal, replacement of missing values, dimensionality reduction, class-balancing,
and normalization (Finding 3 ). As we observed from the practitioners’ re-
sponses, there is no one-size-fits-all type of solution for data processing. More
than two-thirds (76.6%) of the surveyed developers do not use specific data
analysis tools, rather, they use diverse data or problem-specific tools and tech-
niques or develop their own customized solutions.

ML data can be noisy and may require preprocessing such as cleaning or
transformations to be suitable for ML models. However, cleaning ML data is a
challenging task (Finding 4 ) and the data-cleaning approaches are likely to be
data and problem-specific. Thus, the approaches are hard to generalize, scale
up to accommodate a large volume of data, and apply to data automatically.
Quality issues of the data and lack of necessary features in existing tools for
ML data processing make the data cleaning task not only harder but also costly
in terms of time and effort. The process requires adequate domain knowledge
about the associated data and the ML use cases. Practitioners also pointed
out the importance of having a common standard for data and data cleaning
procedures. It is also important for practitioners to be aware of not only the
tools and techniques for data cleaning but also the adverse impact of noisy
data on resulting ML models.

Another key task is to correctly label the data or features for ML models.
Practitioners have outlined several challenges in feature labelling (Finding 5 ).
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One key challenge in feature labelling is the large volume of data which is time
and resource consuming and thus can be costly as it may also involve manual
processing. The feature extraction and labelling procedures are likely to be
problem and domain-specific and thus domain knowledge is important. Poor
quality of data and lack of appropriate labelling guidelines also add challenges
in ML feature labelling. As reported by the practitioners, manual investigation
is still the most commonly used approach for validating features or ML data
labelling where domain knowledge plays an important role (Finding 6). How-
ever, some practitioners use tools and automated scripts for feature validation.

5.3 Feature Engineering

Feature engineering is another important phase of ML application develop-
ment where ML data is processed to generate meaningful features. The key
objective of the features is to best represent the data characteristics that can
help ML models to learn and infer for a defined ML task. Feature engineering
usually comprises of two key functionalities: feature extraction and feature
selection. The feature extraction process should take into account the quality
characteristics while extracting features from the data.

One important requirement for ML data is that data need to be balanced
across different classes (Finding 7 ). Practitioners commonly use different sta-
tistical analyses, visualization, and manual verification to check the class bal-
ancing of the ML data set. To improve model performance, practitioners fix
class balancing issues in ML data using techniques such as re-sampling of data
or stratification of the ML data set. As the feature extraction procedure may
be data and problem dependent, more than two-thirds (76.6%) of practition-
ers mentioned that they do not use specific tools for ML data processing such
as feature extraction. Practitioners usually depend on manual analysis and
custom scripting for feature extraction, while there are some tools available
for feature engineering (Finding 8 ). Based on practitioners’ perceptions, we
observe several limitations of existing feature engineering tools and techniques
(Finding 9 ). Generalization is one of the key limitations of existing feature
engineering tools and associated domain knowledge is necessary to use these
tools. They also are not easily adaptable to new data and problems. Prac-
titioners also identify the lack of usability and simplicity of the tools, which
imposes a slow learning curve on developers.

It is also important to validate the feature quality. Practitioners have re-
ported some common practices in feature assessment and validation (Finding
10 ). One common practice is to use statistical analysis and visualization of
the feature to evaluate the quality characteristics. Practitioners also observe
the resulting model performance to assess the feature quality. Like other ML
development phases, feature validation requires necessary domain knowledge.
However, the techniques are likely to be domain-specific.

Once features are extracted from ML data, selecting the optimal subset
of features for ML models is an important but challenging task. As per the
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practitioners’ responses (Finding 11 ), the feature selection process is mostly
manual and based on domain knowledge while there are some automated tools.
However, different statistical analyses and visualization are useful to gain in-
sights into the features for incremental selection and to find the optimal subset
of features that satisfy desired performance requirements.

5.4 Model Building and Testing

ML models are usually (reported by 93.18% practitioners) implemented based
on available libraries and frameworks while about one-third of the developers
write models from the scratch (Finding 12 ). The models are then trained with
the training dataset and tested for accuracy and performance. One important
and challenging task of the model-building phase is to ensure the accuracy
of the models by testing (Finding 13 ). A widely used practice for ML model
testing is based on model performance evaluating selected performance metrics
on benchmark or validation data set. The testing may involve a comparison
of models considering diverse settings (language, algorithms, target platforms,
etc). ML model implementations are also tested using visualization of internal
model states or external behaviours. There are some tools and frameworks to
support ML implementation. Domain knowledge also plays an important role
in ML testing.

Practitioners also pointed out some defect symptoms commonly used to
assess the quality of ML models. One key parameter is to evaluate model
performance regarding the accuracy, consistency, bias, and generalizability of
models. Training-time behaviors like convergence, training time and trend, and
also output values and distribution from the model can be useful indicators of
defects in the model (Finding 14 ).

Testing ML models is known as a challenging problem. Practitioners have
identified (Finding 15 ) that the “black-box” nature of the ML models makes
it harder to test. ML models can also exhibit robustness to errors; meaning
that ML models can produce correct results in some cases despite incorrect
implementation. In addition, it is also challenging to ensure the adequacy, and
consistency of data. Possible bias, labeling errors, and divergence in the data
set also pose challenges to ML testing. Practitioners are in need of concrete
methodologies for ML testing. Lack of interpretability or explainability also
hinders ML model testing.

5.5 Model Deployment and Maintenance

Once trained and tested, the model needs to be integrated into the target
application for deployment. Deployment of ML models includes different ac-
tivities to integrate and test models in the target application environment.
Practitioners adopt different tools and techniques for model deployment and
post-deployment maintenance of ML models. However, model deployment in-
volves different challenges (Finding 16 ). The very first challenge is to ensure
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the availability of test data with desired quality and diversity to cover all
use case scenarios. Monitoring post-deployment model performance is another
challenge to ensure the functional accuracy and generalizability of models.
Meeting resource requirements, the complexity of models, platform diversity,
adaptability, and overall user satisfaction are important model attributes for
the post-deployment evaluation of ML models or applications.

Practitioners focus on some important maintenance factors for model main-
tenance (Finding 17 ). Over 77% of the practitioners have reported that they
frequently monitor deployed ML applications. In the post-deployment phase,
practitioners primarily focus on the model accuracies, resource consumption,
inference latency (speed), and robustness to unseen data. Besides, different
business factors (e.g., user conversion rate, revenues) are important to moni-
tor during model maintenance. Moreover, the feedback of the target users is
very important to measure the application performance from the end-user per-
spective. Users’ feedback is important for the identification of defects and the
improvement of the features of the ML applications. During the maintenance,
the practitioners may need to set priorities among these factors based on the
specific context of the ML application.

To have further insights, we also took a closer look at how the practition-
ers perceived challenges and best practices in ML application development
observed in our study reflect the challenges and best practices reported in the
existing literature. For example, Amershi et al. [1] reported that practition-
ers from Microsoft emphasized on the availability, quality, and management of
data for ML application development. In particular, the practitioners identified
“accessibility, accuracy, authoritativeness, freshness, latency, structuredness,
ontological typing, connectedness, and semantic joinability” as the important
attributes of ML data. We observe a considerable overlap of the data char-
acteristics reported by the participants in our study (Finding 2) with that of
the study by Amershi et al.. The differences in the listed data attributes are
likely due to the differences in ML development scenarios the practitioners of
the studies are associated with. Practitioners who participated in our study
identify data cleaning as a challenging task where scalability is a key challenge
(Finding 4). This is consistent with the findings of the study by Amershi et
al. [1]. Practitioners in both studies emphasized on the need for tool support
to automate the data processing and feature engineering tasks.

Existing studies reported testing of ML application as a very challenging
task as ML model testing differs from traditional software testing [1, 33, 43].
The practitioners who participated in our study also report testing as a very
challenging task in ML workflow (Finding 13, Finding 14, Finding 15). Mar-
ijan and Gotlieb [42] presented different state-of-the-art approaches to test
ML applications. However, these approaches might not be widely available to
ML practitioners as automated tools. As reported in our study, the practition-
ers used to test ML models based on the observation of model performance,
training-time behaviors, visual inspection, and distribution of output values.
Thus, practitioners are in need of tools and methodologies for ML testing
(Finding 15).
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The findings from our study highlight valuable insights into the practice
and challenges of different phases of the ML application life cycle. The findings
are expected to be useful to make practitioners aware of the challenges in ML
application development. We hope that they will serve as a guide to help
developers adopt best practices for developing high-quality ML applications.

6 Threats to Validity

In this section we discuss some potential threats to the validity of the method-
ology and findings of our study.

Threats to construct validity : Survey is a well-known method to collect
information from relevant people on a specific topic that allows us to summa-
rize, compare and explain the knowledge and perception of the respondents on
the topic of interest [31]. Thus, we adopted survey as our methodology to ask
ML practitioners about their experiences in ML domains. We followed formal
guidelines to design and conduct the survey and analyze the responses to have
insights into the practices and challenges in developing ML applications.

Threats to internal validity : One important threat to the internal validity
is the potential biases in responses from the participants of the survey. We
did a pilot study to get feedback from several survey participants on the ques-
tionnaire. We refined our questionnaire and adapted the recommendation we
received from the pilot study to design the final survey questionnaire.

Threats to external validity : We aligned our questionnaire with the phases
of ML workflow presented in the existing literature. The questions are iter-
atively refined based on the existing literature, domain knowledge and prac-
titioners’ feedback to make the questionnaire cover diverse aspect of ML de-
velopment. Moreover, we selected a large group of participants from diverse
backgrounds and skills for this study. However, this group of participants may
not be representative of the general population of ML practitioners. This is a
potential threat to the generalizability of our findings. To mitigate this threat,
we carefully selected the participants based on their professional profiles on
LinkedIn and their contribution in machine learning projects in GitHub. Also,
we took care to provide many open-ended questions in our questionnaire to
allow participants to express their responses with freedom. We also ensured
that every question includes the option ”Not Applicable” or ”Other”, to al-
low participants to respond appropriately if a question did not apply to them
or if the respondents were not comfortable answering a particular question(s).
The open-ended questions also allowed respondents to explicitly add any other
practices and challenges that they are aware of. Nevertheless, it is desirable
that future studies replicate this work with more ML professionals from diverse
backgrounds.

Threats to conclusion validity : Our results from the survey is not affected
by the choice of methodology used in our study. We have used descriptive
statistics, simple calculation and comparisons that are likely to be independent
of the analysis tools and techniques. However, a different set of respondents
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may result in some variations in the results. We carefully selected the respon-
dents based on their profile and contribution and we cross-validated our data
analysis and reporting methodology with at least two members of the team
conducting this study.

Threats to reliability validity : To ensure reproducibility of our findings,
our data and results are available at an online Appendix [44]. We elaborated
our details methodology for selection of the respondents, data collection and
analysis. As the professional network is continuously evolving and the query
results for specific keywords are likely to vary, and thus the list of participants
likely to differ in future replication of the study.

7 Related Works

Recent advancements in machine learning are making ML increasingly popu-
lar to devise innovative solutions for diverse problems. However, the increas-
ing adoption of machine learning into software applications is posing addi-
tional challenges to the software development process [26]. Challenges in the
traditional software engineering process have been widely addressed by re-
searchers [3]. However, there is a growing need for guidelines and best practices
for developing ML applications.

Schelter et al. [6] focused on ML model management regarding use cases
from conceptual, data management, and engineering perspectives. Amershi
et al. [1] highlighted challenges in AI application development at Microsoft
and shared how the teams address those challenges. Zinkevich [9] presented
guidelines for best practices in ML engineering. There are also guidelines for
responsible AI practices [7, 13]. However, these guidelines are not focused to
find a fit for ML into traditional software engineering process. Many exist-
ing literature focus on different aspects of machine learning such as data ac-
quisition, data preprocessing, feature extraction [8], model management [6],
testing [10,11,20–23,25] and deployment [6, 14,19] of ML applications.

Since testing is one of the most important phases of the development of ma-
chine learning applications, some studies focused on the challenges of testing
Machine learning systems. Ben Braiek and Khomh [36] present challenges that
should be addressed when testing ML programs. In this paper, we report about
techniques and tools currently used by practitioners to cope with these chal-
lenges. Song Huang et al. [32] investigate the characteristics of Naive Bayesian
classifier and DNN classifier and analyze the testing challenges of machine
learning applications like: Generating reliable test oracles, Generating effec-
tive corner cases, Improving test coverage and Testing the ML applications
with millions of parameters. Then some initial techniques were suggested for
machine learning applications which use Naive Bayesian classifier and DNN
classifier to mitigate these challenges. The other study [33] focuses on the most
prominent challenges of testing ML-based systems (Absence of Test Oracles,
Large Input Space and White Box Testing Requires High Test Effort) from
the quality assurance perspective, rather than model performance perspective.
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Then, some existing approaches which alleviate these challenges are reviewed
and discussed regarding their limitations.

Few researches can be found about the difficulties faced by software devel-
opers while developing ML applications or using ML libraries. Considering the
3,243 highly-rated Q&A posts related to ten ML libraries from Stack Overflow
and classifying these questions into seven typical stages of an ML pipeline, Is-
lam et al. [34] performed an analysis from four perspectives to understand the
problems with ML libraries usages: finding the most difficult ML stage, un-
derstanding the nature of problems, nature of libraries and studying whether
the difficulties stayed consistent over time. Bangash et al. [35] studied 28,010
machine learning posts from Stack Overflow and employed topic modeling to
identify key areas of interest to developers. They report that topics related to
Algorithms, Classification, and Training datasets categories are frequently dis-
cussed by developers. Nguyen-Duc et al. [40] in their survey explored different
contextual factors in ML application development to leverage opportunities in
business. Washizaki et al. [27] report about a systematic literature review of
both academic and gray literatures that aimed to collect software engineering
good and bad design patterns for ML application systems and software. They
provide a list of software design patterns and anti-patterns that practitioners
can use to improve the quality of their ML applications.

Our study differs from other existing studies with respect to our focus on
different ML development tasks in the end-to-end ML workflow, while existing
studies [33, 42] focus specific aspect of ML development such as testing. Our
study focuses on insights from practitioners rather than review of the state-of-
the-art [42]. The existing literature have provided useful insights on challenges
for machine learning and software engineering development mostly separately.
In this paper we reconcile these two themes and report about challenges and
best practices of machine learning application development, using insights from
experienced ML developers with diverse expertise and application domain.

8 Conclusion

In this paper, we presented the findings of a survey of 80 ML practitioners from
diverse backgrounds. Our survey covers four key phases of the ML application
development life cycle, i.e., (i) data collection and preprocessing, (ii) feature
engineering, (iii) model building and testing, and (iv) integration, deployment
and monitoring, to identify challenges and practices from practitioners’ per-
spective. We summarized the knowledge shared by these practitioners in 17
key findings. We believe that our findings can be useful in making ML prac-
titioners of all experience levels in academia and industry aware of diverse
challenges in ML application development. In addition, our findings can pro-
vide the practitioners with necessary guidelines and examples of best practices
to adopt in their ML workflow in a context-specific way.
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