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ABSTRACT
SAP is the market leader in enterprise application software offering
an end-to-end suite of applications and services to enable their
customers worldwide to operate their business. Especially, retail
customers of SAP deal with millions of sales transactions for their
day-to-day business. Transactions are created during retail sales at
the point of sale (POS) terminals and those transactions are then
sent to some central servers for validations and other business
operations. A considerable proportion of the retail transactions
may have inconsistencies or anomalies due to many technical and
human errors. SAP provides an automated process for error detec-
tion but still requires a manual process by dedicated employees
using workbench software for correction. However, manual cor-
rections of these errors are time-consuming, labor-intensive, and
might be prone to further errors due to incorrect modifications.
Thus, automated detection and correction of transaction errors are
very important regarding their potential business values and the
improvement in the business workflow. In this paper, we report on
our experience from a project where we develop an AI-based system
to automatically detect transaction errors and propose corrections.
We identify and discuss the challenges that we faced during this
collaborative research and development project, from two distinct
perspectives: Software Engineering and Machine Learning. We re-
port on our experience and insights from the project with guidelines
for the identified challenges. We collect developers’ feedback for
qualitative analysis of our findings. We believe that our findings
and recommendations can help other researchers and practitioners
embarking into similar endeavours.
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• Software and its engineering→ Programming teams.
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1 INTRODUCTION
Artificial Intelligence (AI) and Machine Learning (ML) have shown
promising prospects for intelligent automation of diverse aspects
of business and everyday life [6]. The rapid development of ma-
chine learning algorithms and tools, and easier access to available
frameworks and infrastructures have greatly fueled this era of the
development of AI-Based software solutions for real-world prob-
lems. Software companies, big or small, are striving to adopt ML
in software applications, in order to improve their products and
services. However, the promising potentials of machine learning
accompany multifaceted challenges to the traditional software de-
velopment processes and practices [6, 21]. The use of AI/ML tech-
niques in the development of an application may add challenges to
all phases of the development life cycle [1]. The requirements for
the ML models are expected to be dynamic in nature; to adapt to the
rapidly evolving user requirements and business cases. AI-Based
applications are data-driven. Thus, efficient pipelines and infras-
tructures are required for data-streaming; i.e., data acquisition, data
storage, preprocessing and feature extraction, and ingestion by the
ML models. Also, model building and deployment have different
constraints regarding the type of problem, data, and the target envi-
ronments. Software engineering for machine learning applications
has distinct characteristics that render most traditional software
engineering methodologies and practices inadequate [21]. The de-
sign of AI/ML applications needs to be flexible to accommodate the
rapidly evolving ML components. In addition, the testing of AI/ML
applications differ significantly from traditional software testing.
So, new guidelines are needed to help AI/ML developers cope with
these challenges to develop reliable and high-performance AI/ML
applications. Additional challenges are likely to surface when the
AI-based applications are developed in collaboration of multiple
teams with diverse backgrounds and expertise [20]. In addition,
there is an utmost need for guidelines for best practices in collabo-
rative research and development between industry and academia
in the context of software engineering for ML applications.

In this paper, we contribute to filling this gap by sharing our
experience and insights from a research project on AI-based system
development conducted in collaboration between Polytechnique
Montreal and SAP. We first present our approach to developing
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Figure 1: Conceptual Overview of the AI-based Transaction Error Detection and Correction System

ML-based components for automatic detection and correction of
transaction errors. Here, we apply machine learning on retail trans-
action data to detect and correct transaction errors. We follow an
agile methodology to develop the AI-based solution. We identify
the challenges in each step of our software development process.
We present these challenges along two distinct perspectives: (1)
software engineering, and (2) machine learning. From these per-
spectives, we explore the relationships and dependencies among the
challenges to have better insights into the challenges in software
engineering for machine learning. We synthesize our observations
from the case study and existing knowledge from the literature on
the common challenges and best practices, and formulate a set of
guidelines for developing AI/ML applications.

Our key contributions are summarized below:
• We have identified important challenges in software engi-
neering for machine learning. Our insights will help devel-
opers building AI-based applications.

• We propose guidelines for researchers and practitioners for
best practices in the development of AI/ML applications. We
do qualitative analysis of our findings based on developers’
feedback.

• Our proposed guidelines have been adopted by SAP as part
of its internal guidelines for AI/ML development.

The rest of the paper is organized as follows: Section 2 presents
the overview of the transaction processing systems to outline the
context of the problem addressed. Section 3 outlines our approach
for the detection and correction of transaction errors. We share
important lessons that we learned from this case study in Section
4. Section 5 presents qualitative analysis of our findings. Section 6
discusses the related works. Finally, Section 7 concludes the paper.

2 OVERVIEW OF THE TRANSACTION
PROCESSING SYSTEM

In this section, we briefly describe the transaction processing system
to present the context of the problem addressed in this paper.

2.1 Transaction Processing Workflow
Figure 1 shows a simplified conceptual diagram of the retail trans-
action processing workflow. A retail transaction generally created
in POS terminals represents information about a business activity
such as the sale or return of item(s) and the payments. Retail transac-
tions are created using the front-end applications of the transaction
processing system. The back-end of SAP’s transaction processing
system manages the storage, validation and post-processing of

transactions to support other downstream business functionalities.
At the back-end, all transactions are validated by an automated
auditor to verify the consistency of the transactions. Any erroneous
transaction is flagged by the audit system and a corresponding error
message is added to the error log. These errors are due to different
technical (e.g., network issues) and human errors (e.g., incorrect
product code). This erroneous transactions are then corrected man-
ually by dedicated employees with necessary domain expertise
using workbench application (module A in Fig. 1). Changes made
in individual steps of the correction procedure are also saved as
change logs (process logs).

2.2 Transaction and Transaction Errors
By transaction (Fig. 2) we refer to a set of records (table rows)
in the database related to a single order from customer. A trans-
action consists of hierarchically organized components including
metadata, item-level information (e.g., price, product code, quantity,
item-specific discounts) and the transaction-level information (e.g.,
transaction type, taxes, discounts, payments). Each component can
have zero or more sub-component(s). For example, an item can
have none or several discounts applied on it. The relationships
among the transaction components are governed by well-defined
business rules. Each transaction must conform to these rules to
pass the validation or audit systems. To mention, we cannot present
example transactions due to data privacy agreement.

2.3 The Problem
Transactions are the primary business data in retail industries. How-
ever, as mentioned, due to many technical and human errors, trans-
actions can have inconsistencies. These errors need to be corrected
for business functionalities (e.g., audits) and data integrity. Cur-
rently, due to the lack of an automated or semi-automated tool,
these errors are corrected manually by dedicated employees of
customer companies of SAP. Manual correction incurs high costs,
and it is a serious bottleneck to the business operations. Thus, we
address the problem by developing and deploying ML-based compo-
nents for automatic detection and correction of transaction errors.
Here, our objective is to build machine learning models based on
transaction data and logs to detect (classify) and to correct (predict
actions and the correct values) errors in retail transactions. The goal
is to deploy the automated error detection and correction service
(module B in Fig. 1) to replace existing manual error correction
(module A in Fig.1).
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Figure 2: Transaction data structure

3 ML-BASED DETECTION AND CORRECTION
OF TRANSACTION ERRORS

This section presents our proposed approach for automatic detec-
tion and correction of transaction errors.

3.1 Overall Solution Architecture
As shown in Fig. 3, we process transactions data from the data-
base and extract features. Then, we apply machine learning on
the features to build ML-models for the components (module B in
Fig. 1) for detection and correction of errors. We take a two-step
approach. Our first model (Model 1) is a multi-label classifier that
detects the types of errors in the erroneous input transaction. Each
label in the classification corresponds to a specific error type (and
location). Once we have the errors detected, we apply our second
model (Model 2) to predict values for the correction of the error.
Model 2 is a multi-class classifier that predicts the correction value
from the set of possible values for a transaction field.

3.2 Data Acquisition
In our case, transaction data is stored in a large table (TLOG). An-
other table, the process log table (PLOG) captures all events and
changes to transactions that are done either manually or automati-
cally. Although there are millions of transactions in our data set,
we are particularly interested in the erroneous transactions that
were successfully corrected. Based on the error (task) status of the
transactions from PLOG, we select corresponding erroneous trans-
actions from the TLOG table. Again, the TLOG table contains the
updated state of the transactions. Thus, once corrected, only the
corrected version of an erroneous transaction is available in the
TLOG. However, for ML algorithms, we need the erroneous state
of the transactions from the TLOG. We apply reverse engineering
on transactions in TLOG based on the change-logs in the PLOG
to extract the erroneous version of the transactions. The transac-
tions from the TLOG and the change logs in PLOG are the primary
sources of data for our analysis.
3.3 Preprocessing Transaction Data
Transaction data is passed through some transformations at SAP
customers’ end to remove sensitive business and personal informa-
tion. Not all the transactions with correction logs qualify for our
analysis. We filtered out transactions that are missing necessary
attributes or that are outliers (with an excessive number of product
items).

Figure 3: Error Detection and Correction Inference System
Architecture

3.4 Feature extraction
We extract selected transaction field values (e.g., unit price) as base
features. We also compute derived features from the extracted base
features. Each feature vector is composed of features representing
both transaction-level and item-level values of the transaction fields.
As transactions are variable in size regarding the number of items,
we consider transactions only with maximum 20 retail items based
on exploratory analysis to avoid making the feature too sparse. We
define a fixed-length feature vector that contains information for
a maximum of 20 retail items. Our selection of features are based
on the knowledge from domain experts and our understanding
of the relationships among the transaction components. We iter-
atively refined our choice of the transaction fields as features for
ML algorithms.

3.5 Error detection approach
A transaction can have multiple errors. Thus, we model our error
detection problem as a multi-label classification problem to identify
the types and locations of errors. Here, we label the feature vector
for each transaction with a binary vector of length equal to the
number of possible error classes. The label vector contains 1s in
places where there is an error in the corresponding transaction
component, and 0s otherwise. We identify errors by examining the
manual changes in the process log (PLOG) table. For example, if
we detect a change in a tender type code for error correction, we
infer that there was an erroneous tender type code. Thus, we set
the bit in the label vector corresponding to the tender type code to
1. We apply supervised learning on the labeled dataset to build ML
models for multi-label classification for error detection. For error
detection, we need transaction data with correction examples. So,
we select transactions that were erroneous and have correction
histories in PLOG. We exclude erroneous transactions without
corrections. Then, we extract features from the erroneous version
of the corrected transactions.We also add samples from transactions
without any errors in our dataset. These transactions qualify all the
selection criteria (e.g., no of items) except they are not erroneous.
We split the features into balanced data sets for training, testing,
and validation.

3.5.1 Multi-label Classifier. We apply Random Forest algorithm for
multi-label classification. Random Forest algorithm can be applied
for both classification and regression problems and can handle the
over-fitting problem of Decision Tree algorithm. Random Forest
algorithm is an ensemble learning method that constructs a multi-
tude of decision trees. The classification and prediction decisions
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are based on the combination of output of the constructed deci-
sion trees. In addition, we also apply Decision Tree, and AdaBoost
Classifier to detect errors in transactions. However, RandomFor-
est outperformed both of these algorithms. We also apply neural
networks (NN), specifically Multilayer Perceptron (MLP), for er-
ror classification. However, because of our limited number (less
than 100 to a few hundred for most error types) of error correction
samples, MLP could not be trained properly for most of the error
types. Finally, we opted for Random Forest which achieved the best
performance.

3.6 Error correction approach
By error correction, we refer to predicting the correct values for the
erroneous transaction components. We model the value prediction
problem as a multi-class classification problem. The predicted class
refers to a value from the possible set of values. Each model is
trained for a distinct type of error. The features are extracted from
the erroneous transactions in TLOG and the corresponding logs
in the PLOG. The new value of a changed field of an erroneous
transaction is set as the target label for the algorithm to predict.
For the categorical field values (e.g., Tender Type Code), we need
to predict the correct value from the set of alternative values for
a given field. Here, the target label is a one-hot encoded vector of
possible values for the associated field.We build our error correction
model based on the transactions with corrections available in the
transaction database. We split the features into balanced data sets
for training, testing, and validation.
3.6.1 Multi-class classifier. We formulate the error correction prob-
lem as a multi-class classification problem. Here, the classifier picks
one of the values from all possible alternative values as the correct
value. The label vector for each data sample represents a binary vec-
torwith ’1’ in the index of the correct value and 0’s in all other places.
We apply the Logistic Regression (one versus all) algorithm for the
value-prediction problem. We also applied Multilayer Perceptron
(MLP) neural networks to predict values for error correction. As we
have mentioned earlier, we have limited correction data samples
for most of the error types. Consequently, NN models performed
low compared to simple Logistic Regression. Limited data size and
class-imbalance issues are likely to blame for the poor performance
of NNs.

3.7 Model Performance
We measure precision, recall, accuracy score and Jaccard similarity
score of the models to evaluate model performance.1,2 Here, pre-
cision refers to the ratio of the number of correctly predicted or
classified cases to the total number of cases and recall is the ratio
of the total number of correctly predicted or classified cases to the
total number of true cases.Accuracy, on the other hand, refers to the
ratio of correct prediction to the total number of prediction. We also
measure Jaccard Similarity which is the ratio of the cardinalities
of the intersection and the union of two sets of labels (predicted
and the true set). In this section, we present the performance of the
models that detect "Tender Type code" errors.

3.7.1 Error Detection. Fig. 4 presents the error detection perfor-
mances of four different model configurations regarding error types.

1https://en.wikipedia.org/wiki/Precision_and_recall
2https://en.wikipedia.org/wiki/Jaccard_index

Here, Model1s, Model2s, and Model3s are to predict errors only in
the first, second and third tender type code respectively. Model3a
is trained to predict all of the first three tender type code errors.
We present the error detection performance based on the Random
Forest algorithm. Here, the first group of bars in Fig. 4 (Model1s)

Figure 4: Error detection performance

represents the error detection performance when only errors in the
first tender type code were considered. Here, we observe that the
detection accuracies of the model are above 90%. However, for the
second (Model 2s) and third (Model 3s) models, the detection per-
formance drops. This declination in performance might be related
to the comparatively lower number of training samples for each
category. Again, when we include all the first three tender type
codes in the detection model (Model 3a), we see a slight increase in
the detection performance (above 80%). We observe that the size of
the training dataset influences the training of the models and their
prediction accuracies.

3.7.2 Value Prediction. For value prediction we compute the ac-
curacy of top-k recommendation of correction values. The perfor-
mance is based on the results obtained by applying the Logistic
Regression Cross-validation (one-vs-rest) algorithm for multi-class
classification. Here, the value prediction accuracy of the model is
76% if we consider single predicted value with the highest probabil-
ity (i.e., k=1). However, we also evaluate the prediction accuracy
for top-k (k = [1, 5]) of the model. We see that the accuracy of top-5
prediction containing the expected value is 93%.

3.8 Research and development methodology
We adopted the agile methodology (SCRUM [22]) considering the
incremental and iterative nature of the problem. SCRUM acceler-
ates software development with faster delivery cycles while offer-
ing flexibility [20]. Our team comprise members from academic
and industry partners with diverse expertise on software engineer-
ing, machine learning, target software ecosystem and the business
model of SAP. In our agile process, the length of each ‘sprint’ was
30 days with ‘daily stand’ to update on changes towards the sprint
goals. There were weekly meetings to review and to sync progress
while there were biweekly meetings for all members from academia
and industry to review the progress on the sprint milestones and
deliverables. We documented the challenges and discussed solu-
tions to those challenges during our meetings. We later analyzed
those documentations to derive lessons on the challenges and best
practices in each phases ML application development. Each sprint
ended with a ‘sprint demo’ and review of any ‘retrospective’ to
address backlogs. The whole project spanned over six sprints.

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Jaccard_index
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4 LESSONS LEARNED
Machine learning applications have some distinct characteristics
compared to traditional software applications. Thus, software devel-
opers and practitioners should be aware of a number of challenges
or risk factors regarding ML applications [23]. In this study, we
adopted our methodology for a systematic case study based on the
guidelines from Wohlin et al. [26] and Yin [28]. Here, the proposed
error detection and correction system serves as an example case to
derive insights for the practitioners. We review existing literature
to explore software engineering methodology [1, 29] for ML appli-
cations, common challenges [16, 21, 25] and best practices [30] for
ML application development. We synthesize our experience from
the project with the existing knowledge to list key challenges in
ML application development and to formulate recommendations
for practitioners. We describe our experience from the case study
along two different perspectives: software engineering (S) and ma-
chine learning (M). We explore their relationships to have insights
into the software engineering principles and practices for machine
learning applications.
4.1 Software Engineering Perspectives
In this section, we discuss challenges in different phases of software
development life cycle (SDLC) and recommend best practices for
ML applications as follows:
4.1.1 S1: Requirements Engineering: Poor quality of require-
ments can lead to many issues in the successive phases of the
software development [7]. Requirement engineering for ML ap-
plications involves both ML specific and traditional requirements
engineering activities such as feasibility analysis, requirements
gathering, requirement specification and validation. As the require-
ments in ML applications may change frequently, requirements
specification for ML applications is a challenging task [2]. In our
project, we gathered requirements from the discussions and demon-
stration by the domain experts. We analyzed the transaction data
structures, example error types, and their correction procedures.
We iteratively refined our requirements specification based on the
results of our different prototype models and the feedback from
the domain experts. In our project, the members from the academic
partner did not have direct interactions with the end-users (SAP
client). The requirements were gathered and shared by the industry
partner. We observed that direct communication with the end-user
and the on-site observation of error correction scenarios is impor-
tant to speed up requirement elicitation. In fact, the round-trip
discussions after each model prototyping using the available data
would be more efficient if information about the performance of the
models and resulting requests for additional data collection were
shared directly with users. Iterative refinement of the requirements
based on the feedback from the stakeholders can help eliminate the
differences in perception of the requirements. Otherwise, delayed
identification of requirements and the consequent changes to the
ML applications can be costly.
4.1.2 S2: Design: Software design specifies the scope, function-
alities, and interactions of the software components. Unlike tradi-
tional software systems, the behavior of the ML applications can
be unpredictable and defined by the training data. Again, ML ap-
plications require a large volume of data. Thus, their design needs
to accommodate the constraints and overhead on data processing.

ML application design should be flexible to adopt rapid changes
in ML algorithms and frameworks. Again, the performance of the
system may degrade due to changes in data pattern (i.e., concept
drift) over time without changes in the requirements or without
the presence of bugs. Thus, the maintenance requirements of the
ML applications may be hard to predict. So, the design need to be
flexible to accommodate such changes. In cases of adding AI/ML
capabilities to the existing application, the design should consider
minimum restructuring of the existing system architecture. Sim-
ilarly, the design of a new ML application should be flexible to
adapt future changes. In our case, we add functionalities to the
existing application and we focused on the functional requirements
of the modules and the interfaces for interaction with the existing
application.
4.1.3 S3: Implementation: Development of ML applications
commonly involves the use of different frameworks and libraries.
However, it is hard to put together a diverse set of frameworks and
libraries and to ensure compatibility and integrity of the system.
Again, ML models are “Black Box" and are hardly explainable [4, 5].
Thus, it is hard to clearly understand why they work and why some-
times they do not. In addition, ML models may exhibit robustness
to noises [8] making it harder to verify the implementation. Again,
the development environment for ML models might be different
from the production environment. So, the implementation of ML ap-
plications should consider the target platform requirements while
choosing frameworks and libraries. Also, the hardware-software
ecosystem for ML applications are rapidly evolving. Thus, the im-
plementation choices should also consider maximizing portability,
compatibility, and adaptability of ML applications with lower cost.
In our project, we needed exploration and experimentation with
different algorithms. So, we implemented a framework that offers
flexibility to apply different ML algorithms. Our implementation
strategy leverages code reusability. We needed to use different ML
frameworks (scikit-learn, TensorFlow, Keras) to implement our
ML-based components.
4.1.4 S4: Integration: Integration process aggregates the com-
ponents and must also ensure the functional integrity of the system.
The integration of ML applications can be viewed as a two-step
process; first integrating the sub-components of the ML component
and then the integration of the ML components with other non-ML
components. Thus, the defined interface between ML components
with other components may influence the process and complexity
of the integration phase. Again, ML models are expected to evolve
continuously. Thus, the ML workflow should facilitate continuous
integration of ML models. In our case, we needed to define a new
interface for SAP application so that inference from the container-
ized ML models hosted either locally or on remote cloud can be
accessed as services through APIs.
4.1.5 S5: Testing: As the outcomes of machine learning models
are usually stochastic in nature [8, 15], there might not be unique
results to compare and verify machine learning applications. Thus,
the existing unit testing frameworks (e.g., PyUnit for Python) cannot
be readily used to test ML applications. Again, ML models learn
from the input data in an adaptive and iterative manner [17]. The
rules learned by theMLmodels depend onmany parameters such as
the selected features, the model architecture and even the training
data. The rules generated byML systems might even be unknown to
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the developers [17]. ML models are opaque, and it is hard to explain
the model behaviors. Thus, it is harder to identify the erroneous
system behaviors and to pinpoint the source of the bugs. Again,
ML algorithms may sometimes exhibit robustness to some bugs
and produce reasonable outcomes by compensating for noisy data
or implementation errors [8]. Thus, bugs in ML application can be
tricky to detect and fix. All these issues make the testing and fixing
of erroneous behavior in ML applications a very challenging task.
For our ML components, we evaluate the model accuracies with
the evaluation data set. We also unit-tested individual modules and
tested the overall functionality with integration testing.

4.1.6 S6: Deployment: Deployment phase puts the software sys-
tem into production by either updating or replacing the existing
system. For ML applications, this phase is more likely to add new
functional module(s) to the existing system. One important chal-
lenge to consider in ML system deployment is that the platform
and infrastructure for production system might be very different
from the environment the ML model was trained and evaluated.
These differences can pose compatibility, portability and scalabil-
ity challenges and may affect the performance. In our project, we
developed a framework to deploy the models and to evaluate their
performance. Our design aimed at creating an ML-based service for
the existing applications. We tested our model deployment as REST
API-based web services for error detection and correction. We took
different factors into account for the deployment of our models
such as scalability, performance, resource requirements and the
ease of model maintenance. The deployment and roll-out strategy
should be cautious not to affect the system users.

4.2 Machine Learning Perspectives
ML application development requires a well-defined set of princi-
ples and guidelines as recommended by practitioners [30]. Here,
we highlight some key challenges and practices for ML application
development from ML perspectives.
4.2.1 M1: Problem Formulation: Machine Learning algorithms
offer general-purpose solutions. We need to formulate problems
appropriately to fit into the ML-based solution space. One key chal-
lenge to formulating an ML problem is that one should clearly
understand the problem, the algorithms and the mapping of the
problem from the original domain to the ML solution space. This
requires an ML solutions architect to have diverse set of skills and
expertise. The correct formulation of the problem is a prerequisite
to the success of other phases of ML application development such
as data acquisition, selection and extraction of features, and model
building. In this study, we analyzed the transaction processing
workflow based on domain knowledge from industry experts. Our
problem definition is based on the domain understanding, transac-
tion data structures and organization, types and characteristics of
errors and their manual correction process. We also considered the
relationships and dependencies among the transaction components.

4.2.2 M2: Data acquisition: Collection and processing of large
volume of data are critical overheads for machine learning [19].
Insufficient data is also a problem for machine learning applications.
The data acquisition must focus on the completeness (representa-
tive of full range of behaviours), accuracy (correctness of the data),
consistency (no contradictory data), and timeliness (relevant to the

current state of the system) of data to ensure data quality [10]. How-
ever, maintaining data quality requires careful steps in collection,
curation, and maintenance of the data. This is often very expensive
regarding the time and associated manual labour [10]. In our study,
the transaction data was provided by SAP from a client company.
Sensitive business and personal information was removed from
the transaction. Although SAP solutions have a comprehensive
set of features, the clients have the flexibility to customize data
structures and functionalities. These customizations add challenges
for the ML models to generalize for different clients for the same
uses cases. Our analysis suggests that some prior analysis of the
data and the problem is important to set appropriate data require-
ments, especially before the acquisition of a large volume of data.
The structure and distribution of the data may evolve over time,
the data acquisition process should be flexible to easily adapt such
changes in data.
4.2.3 M3: Preprocessing: For a data-driven system, the fact is
“garbage in garbage out”. Noisy data is claimed to one of the top
challenges for ML practitioners. Noisy data can adversely affect the
learning and thus the inference of the models. Thus, raw data need
preprocessing to remove noise, to fill in the missing values, and to
do other transformations. Data preprocessing is a challenging phase
for machine learning and may incur a significant proportion (>50%)
of time and effort [12]. In our study, we first performed exploratory
analysis of transaction data to understand the attributes of the
transactions. We observed that overall structure of the data, the
types and range of values of individual fields may demand careful
attention and warrant specific preprocessing task to ensure cor-
rectness and consistency of the data. We applied a set of heuristics
on the transaction data to filter noises. Our preprocessing steps
include filling the missing values and the normalization of data
fields to correct formatting differences. To reduce data preprocess-
ing overhead, ML workflow should maximize the reusability of the
preprocessed data.
4.2.4 M4: Feature Extraction: Feature extraction performs opti-
mal transformation of input data into feature vectors for the ma-
chine learning algorithms [9]. Features should best represent the
hidden characteristics of the data. Feature extraction also aims to
remove the potential noises and redundancy from the data [9]. This
also finds a low-dimensional representation of the data to reduce
model complexity, and to improve the speed of the training and in-
ference of ML models. However, it is challenging to extract features
by processing a high volume of data. In our case, we considered the
domain knowledge and the transaction data structure and relation-
ships as the basis of feature selection. In addition to base features,
we also extracted derived features for our ML models. The quality
of features greatly influences the performance of the ML models.
Thus, ML developers must find the best set of features. There should
also be a periodic review of the features as data evolve [30].
4.2.5 M5: Model Building: ML models are created based on
specific ML algorithms depending on the problem and the char-
acteristics of the data. One frequent problem for ML models is
‘overfitting’when a model performs well on the training dataset but
does not generalize. This might be because the model is too complex
resulting from the higher dimensional features and the complex or
deeper architecture of the model. The solution is to find the simplest
model that does the required job. However, too simple models may
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fail to capture the hidden patterns in the data causing ‘underfitting’.
ML developers should start with a simpler solution (build a baseline
model) and gradually adopt more complex solutions considering
the resource-performance trade-off. Also, data distribution need to
be balanced. Otherwise, the inference of the model might be biased
towards the dominating class of the training data. In our project, we
observed overfitting issues with neural networks of comparatively
deeper architecture for error classification. We eliminated feature
redundancies and tuned neural network architectures to avoid over-
fitting. Class-imbalance problem was another important issue as
the distribution of error samples were very skewed to a limited
class of errors. However, we balanced (stratified) the training, test,
and evaluation dataset to improve model performance.
4.2.6 M6: Evaluation: ML models are evaluated by applying the
ML models to the evaluation dataset exclusively separated from the
training data set. The evaluation dataset should be complete enough
to represent all possible use-case scenarios. Both pre-deployment
evaluation and post-deployment performance monitoring are im-
portant, as the performance may drop with changes in the input
data characteristics. Thus, ML models may need to update (e.g.,
retrain) to adapt to the changes. So, the evaluation of ML models
can be iterative. Also, there might be different interacting models.
So, the performance of the individual models may only represent
a part of the end-to-end scenarios. Thus, it is important to have
both model-level and system-level evaluations. In our study, we
evaluated the individual models and also the overall performance
after the integration of the models.
4.2.7 M7: Model integration and deployment: Trained mod-
els are integrated into the target application. This involves putting
all necessary components (e.g., models, input-output pipelines) to-
gether. For multiple models, it may require to define and implement
the interface for each model to interact with other models and sys-
tem components. One common approach is to deploy ML models
as services and accessing the services through APIs. The deploy-
ment should consider the portability and compatibility of the ML
models regarding the target platform. In our project, we develop
an interface between the ML-based components and the existing
application for model deployment to provide the error detection
and correction services. The deployment must ensure a smooth
roll-out of the existing system without affecting the user or the
business process.
4.2.8 M8: Model management: ML model management involv-
ing creation, deployment, monitoring, and documentation of ML
models is a challenging task in ML workflow [21]. ML models are
data-driven and are based on different assumptions on the distribu-
tions and patterns of data. However, initial characteristics of data
may evolve which may affect the model behaviour. Thus, it is im-
portant to monitor the performance of the deployed models, track
changes in the data characteristics, and also, retrain and re-validate
the models as necessary. These require iterations on ML model
life-cycle activities which are often very expensive regarding time
and resources. It is also important but hard to keep track of the
model versions, dataset and configurations to allow reproducibility
of ML models [29] and easier management of ML workflow.3 Model

3https://code.fb.com/ml-applications/introducing-fblearner-flow-facebook%
2Ds-ai-backbone/

reproducibility helps us to analyze and compare model behavior
and performance, and also supports deployment or roll out deci-
sions. We defined policies to version data, keep track of models and
configurations for comparative analysis of our ML models. Each
phase of the ML life-cycle should be well-documented to support
model maintenance.
4.2.9 M9: Ethics in AI development: Development of ML ap-
plications must adhere to AI ethics principles to ensure responsible
use of AI “responsible” use of AI.4 Researchers and practitioners
should also adhere to the standard code of ethics for Software En-
gineering.5 In our project, we maintained strict data privacy and
security policies. Personal information was filtered out from the
transactions, and all the team members followed a non-disclosure
agreement that protects the privacy and security of personal and
business-sensitive information. For ethical use of AI/ML, collective
well-being must get priority over business gains.

5 QUALITATIVE ANALYSIS OF THE FINDINGS
We performed qualitative analysis of our findings based on the
feedback from anonymous developers from SAP. The aim is to have
developers’ insights into the identified challenges and proposed
recommendations for ML application development regarding the
completeness, generalizability, and usability or practical implica-
tions. We received feedback from seven developers (P1-P7) from
SAP who are not related to this research project. One developer
from SAP volunteered for the collection and anonymization of the
feedback. Our list of challenges and recommendations were shared
with the developers, and they provided feedback by email to the
coordinator on two questions, (1) How well the identified challenges
reflect the challenges in your ML application development context?,
and (2) How actionable the proposed guidelines are regarding your
own ML development context and beyond?.

Most of the developers found our findings relevant to their de-
velopment context and actionable. P2 mentioned that (the findings)
“reflect very well the challenges that we have experienced in several
ML projects". The findings “reveals the complexity aspects of ML
projects (P3)" and “the identified challenges and recommendations are
relevant and comprehensive (P6)". P7 mentioned that the findings
“are relevant and valuable for the daily life of a data scientist and
developer." while P3 considered the recommendations “suitable for
a whole team that starts with a new ML project". Regarding usability
in practice, P1 commented, “we could profit substantially from their
experiences (recommendations)". P4 mentioned, “from the projects I
did so far, I find the inputs (recommendations) very usable and it could
serve as a good checklist of what to be aware of in a project". P2 was
aware of the recent adoption of the proposed recommendations as
part of the internal ML guidelines at SAP and added that the recom-
mendations served as the “basis for deriving two concrete guidelines:
one for developers and architects and one for data scientist which we
have applied a couple of times now. So I would say the paper (find-
ings) are actionable". P3 highlighted the data quality (M2, M3) issue
saying that “in our project, we faced severe data quality issues. Other
teams reported the same: garbage in, garbage out". P5 shared how
data privacy concerns posed challenges in developing ML based
solutions by their team for banking systems. P7 mentioned that ML

4https://ai.google/responsibilities/responsible-ai-practices/
5https://www.computer.org/web/education/code-of-ethics

https://code.fb.com/ml-applications/introducing-fblearner-flow-facebook%2Ds-ai-backbone/
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aspects such the “explainability of ML results are currently discussed
in our community". However, some developers emphasized on the
guidelines to be more specific (P3, P5, P7) while acknowledging that
“each ML project is different and might need a different focus on the
single dimensions (SE or ML) and its importance" (P3). The developers
also mentioned some suggestions from their experiences which we
used to refine our recommendations. Thus, our qualitative analysis
shows the potential benefits of our recommendations. However, it
is not surprising that our recommendations in some cases do not
outline the detail execution. This is because our project context
does not cover all different aspects of ML development. We thus
need to carry out further investigations to have more concrete and
context-specific guidelines.
6 RELATEDWORKS
Challenges in traditional software engineering process have been
widely addressed by the researchers [20]. However, there is a grow-
ing need for guidelines and best practices for developing ML ap-
plications. Schelter et al. [21] focused on ML model management
regarding use cases from conceptual, data management, and engi-
neering perspectives. Amershi et al. [1] highlighted challenges in
AI application development in Microsoft and shared how the teams
address those challenges. Zinkevich [30] presented a concise set
of guidelines for best practices in ML engineering. Many existing
literatures focus on the data acquisition [3, 19], data preprocessing
[13, 18], feature extraction [9, 25], model management [21], testing
[8, 17] and deployment [21] of ML applications.

Lanubile et al. [14] shared practitioners perceived challenges in
putting ML models into production. They reported that there is lack
of support for developers to adopt software engineering best prac-
tices for AI-based system development. Serban et al. [24] argued
that guidelines for the development of trustworthy ML systems
should be adopted as operational best practices for ML development
lifecycle. Heck and Schouten [11] suggest that for AI engineering,
the software development process needs to be extended with data
and model engineering. They highlighted the importance of collec-
tion, storage, cleaning and visualization of data and accommodating
insights from concerned domain experts. Xie et al. in their recent
study [27] reported that most of the existing studies did not focus
enough on the data management and model production, and fur-
ther research should address AI life-cycle management. Existing
literature shared useful insights on challenges for ML and software
engineering separately. However, there is a growing need for a
consolidated set of guidelines regarding software engineering for
machine learning. We aim to contribute to filling this important
gap by reporting about our experience building ML application in
an industrial context.
7 CONCLUSION
In this paper, we share our experience on the development of ML-
based automatic detection and correction of errors in retail trans-
actions. We outline our detail approach involving research and
development to solve this important real-world problem in the
retail business. We identify challenges in ML application develop-
ment from software engineering and machine learning perspec-
tives. Based on our experience building these ML components and
the principles and practices in software engineering and machine
learning, we report some important insights and highlight some

recommendations that we believe will be useful to researchers and
practitioners embarking in engineering ML applications.
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