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Abstract—Exact or similar copies of code fragments in a code
base are known as code clones. Code clones are considered as
one of the serious code smells. Stability is a widely investigated
perspective of assessing the impacts of clones on software systems.
A number of existing studies show that clones are often less
stable than non-cloned code. This suggests that clones change
more frequently than non-cloned code and thus may require
comparatively more maintenance efforts. Again, frequent changes
to clones may increase the likelihood of missing change propa-
gation to the co-change candidates leading to inconsistencies or
bugs. However, none of the existing studies investigate whether
stability of clones is related to the bug-proneness. In this paper,
we present an empirical study that analyzes the relationships
between stability and bug-proneness of clones. We identify bug-
fix commits by analyzing the commit messages from software
repositories. We then identify the clones those are changed in
the bug-fix commits as bug-prone clones. We then compare the
stability of buggy and non-buggy clones considering the fine-
grained syntactic change types and their significance.

Our experimental results based on five open-source Java
systems of different size and application domains show that (1)
stability and bug-proneness of code clones are related and this
relationship is statistically significant, (2) for both exact (Type 1)
and near-miss (Type 2 and Type 3) clones, buggy clones tend to
have higher frequency of changes than non-buggy clones, (3) the
bug-proneness of Type 2 and Type 3 clones tend to be strongly
related with their stability compared to Type 1 clones, and (4)
the relation between the stability and the bug-proneness of clones
with respect to fine-grained change types is likely to be influenced
by the changes of low to medium significance. We believe that
our findings are important and potentially useful in identifying
and prioritizing candidate clones for management.

Index Terms—Code Clones, Clone Stability, Bug-proneness of
Clones

I. INTRODUCTION

Code reuse by copying a code fragment and pasting it with
or without modification results in duplicate copies of exact or
similar code fragments in the code base. These exact or similar
copies of code fragments are known as code clones. As clones
constitute a significant proportion (between 7% and 23% [1]) of
code bases of software systems, many studies investigated the
impact of clones on software systems. A number of studies [2],
[3], [4], [5], [6] show that clones are not harmful and instead
clones can be beneficial for software systems [7]. Although
clones have some obvious benefits like increasing productivity
due to faster software development by code reuse, a number
of studies [8], [9], [10], [11], [12], [13], [14], [15], [16] report
strong empirical evidences concluding that clones have negative

impacts on software systems. Thus, code clones are considered
as one of the serious code smells.

One well known claim against code clones is that code
clones may introduce bugs or inconsistencies [8] in the software
systems if they are not changed consistently during software
evolution. Moreover, if a code fragment with unidentified bugs
is cloned, hidden bugs may also propagate to the new cloned
fragments [14]. Given the important concerns related to clones,
there are many studies on bug-proneness of clones. Some
studies focused on the identification and localization of bugs
[13], [14], [17]. Some studies investigated the comparative bug-
proneness of different types of clones [18], [19], [20] while
some studies focused on analyzing the features or characteristics
of clones related to bugs [21]. A number of studies also
analyzed the bug-proneness of clones from the perspective
of inconsistencies due to late propagation [11], [22], [23].

Stability refers to the extent to which a code fragment
remain unchanged. Less stable clones change more frequently
and thus require comparatively more maintenance efforts than
more stable clones. Stability of clones is one of the most
widely investigated aspects of the impacts of clones on software
systems [3], [24], [25], [26]. Although the existing studies have
significant findings with respect to different aspects of the bug-
proneness of clones, none of the existing studies investigated
whether or to what extent the stability of clones is related to
bug-proneness. Again, there are strong empirical evidences that
inconsistent changes to clones and missing change propagation
or late propagation are strongly related to the bug-proneness of
clones [11], [22], [23], [27]. Also, different types of syntactic
changes may have different impacts on change propagation and
missing change propagation to clones are related to bugs and
inconsistencies. Thus, it is important to investigate whether the
types of syntactic changes to code clones contribute to their
bug-proneness behaviour.

In particular, we represent the findings of our empirical study
by answering the following research questions:

RQ1 Is there any relationship between the stability and the
bug-proneness of code clones? If yes, is the relationship
significant?

RQ2 To what extent the association between the bug-proneness
and stability of different types of clones are different?

RQ3 Do the frequencies of changes of different significance
levels differently affect the bug-proneness of clones?



In this study we investigate the relationships between the
stability and the bug-proneness of clones using fine-grained
change information from software repositories. The primary
contributions of the paper are as follows:

(1) We investigate the relationships between the stability
of clones and their bug-proneness. Although stability
of clones is one of the most widely studied aspects of
the impact of clones on software systems, none of the
existing studies investigated whether or to what extent the
stability of clones is related to the bug-proneness. Clone-
induced inconsistencies and bugs are of important concern
regarding the impacts of clones on software systems. Our
investigation aims in revealing the relationships between
stability and bug-proneness of clones. This is important
whether stability is an influencing factor for clones to be
bug-prone and vice-versa.

(2) Different types of clones may have a different degree of
association with their corresponding stability. We carry out
a clone type-centric analysis of the relationship between
the stability and bug-proneness of clones.

(3) Although different types of syntactic changes have differ-
ent impact on the software systems, none of the existing
studies consider fine-grained change types while inves-
tigating the bug-proneness of clones. We consider fine-
grained syntactic change types and their levels of change
significance for in-depth analysis of the relationships
between the stability and bug-proneness of clones.

We analyze the bug-proneness of clones from a new
perspective. The study aims to relate the stability of clones as a
potential influencing factor to the bug-proneness of clones. The
findings of the study have the potentials to help in identifying
and prioritizing clones for clone management activities such
as clone refactoring and tracking.

The rest of the paper is organized as follows: Section II
defines and explains key terminology in context of our study.
Section III briefly describes the taxonomy of changes used
in this study. Section IV represents the experimental settings
and steps used in the study including the subject systems used,
change extraction and classification procedure, and the metrics
we measure. Section V represents the experimental results.
Potential threats to the validity of the study is represented
in section Section VI. Section VII discusses related works
followed by the conclusion in Section VIII.

II. TERMINOLOGY

Clones and Clone Types: Clones are exact or similar code
fragments. Here, code fragment refers to a contiguous block
of code. Code clones are of four types: Type 1, Type 2, Type
3 and Type 4 clones [28].

• Type 1 Clone: Type 1 clones are exact copies of code
fragments except differences in layout, whitespace and
comments.

• Type 2 Clone: In addition to Type 1 differences, Type 2
clones have differences in data types and identifier names.

• Type 3 Clone: Type 3 clones are created by addition,
deletion and modification of statements or lines to Type
1 or Type 2 clones.

• Type 4 Clone: Type 4 clones refer to the semantically
or functionally identical code fragments with different
syntactic implementations.

Clones Pair and Clone Class: A pair of code fragments
form a clone pair when they are clones of each other. A set of
two or more code fragments in which any two code fragments
belong to a clone pair are represented as clone class. In this
study, we consider exact (Type 1) and near-miss (Type 2 and
Type 3) clones for our analysis at method level granularity.

Change Significance: Fluri and Gall [29] in their taxonomy
of fine-grained source code change, assign a level of signifi-
cance to each of the change types. The significance level defines
the extent of the impact of a change i.e., the extent of changing
system functionality and the likelihood of a change to affect
other related entities for the required changed propagation. The
higher the significance level, the higher impacts of the change
will be on the related source code elements. They define four
different levels (low, medium, high, crucial) of significance
for fine-grained syntactic change types. Here, crucial is the
highest level of change significance and low is the lowest level
of change significance.

III. TAXONOMY OF SOFTWARE CHANGE AT METHOD
LEVEL

Software systems evolve through different kinds of changes.
For our study, we consider the taxonomy of change proposed
by Fluri and Gall [29] which is a comprehensive taxonomy for
fine-grained source code change and it defines the significance
levels of changes. As our clone analysis is at method level
granularity, we consider only the method level changes in
the taxonomy proposed by Fluri and Gall. The taxonomy of
changes used in this empirical study is presented in Table I.

Changes to individual methods are referred to as method-
level changes. Changes to methods are further divided into
two groups, changes to method declaration and changes to
method body, based on where the changes occur in the methods.
Changes to method declaration part (method signature) include
changes in accessibility, overridability, method renaming,
parameter change and changes to return type. Changes to
parameters include addition, deletion, renaming, reordering
and parameter type change. Changes to method body comprise
changes to statements and structure statements (e.g., loop,
branching). Statements might be added, deleted, modified and
reordered. Each of these fine-grained change types is assigned
a level of significance based on their likelihood of affecting
other code entities and the extent they modify the functionality
of the system as proposed by Fluri and Gall.

IV. EXPERIMENTAL SETUP

This section describes the experimental setup of our empirical
study including the subject systems used, methodologies for
identifying buggy commits, change extraction and classification,



TABLE I: TAXONOMY OF METHOD-LEVEL CHANGES
WITH SIGNIFICANCE (adapted from [29])

Part Change
Group

Change Type Significance
M
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Accessibility Accessibility Increase Medium
Accessibility Decrease High

Overridability Add Method Overridability final Crucial
Delete Method Overridability Low

Parameter

Parameter Insert Crucial
Parameter Delete Crucial
Parameter Ordering Crucial
Parameter Renaming Medium
Parameter Type Change Crucial

Method Name Method Renaming High

Return Type
Return Type Insert Crucial
Return Type Delete Crucial
Return Data Type Chang Crucial

M
et

ho
d

B
od

y Statement

Statement Insert Medium
Statement Delete Medium
Statement Update Low
Statement Re-ordering Low

Structure
Statement

Condition Expression Change Medium
Statement Parent Change Medium
Alternative- part (else) Insert Medium
Alternative- part (else) Delete Medium

clone detection and the measurement of comparative stabilities
of buggy and non-buggy clones. The following subsections
describe the details of the experimental settings of our study.

A. Subject Systems

This study is based on five open source systems implemented
in Java with diversified size and application domain. Table II
briefly represents the features of the software systems including
the application domain, size in lines of code (LOC) and the
total number of revisions. The size of the systems represents
the lines of code (LOC) in the last revision of the systems
counted after removal of comments and pretty-printing.

TABLE II: SUBJECT SYSTEMS

Systems Type Size (LOC) #Revision

DNSJava DNS Protocol 20831 1679
JabRef Bibliography Manager 153952 3718
Carol Driver Application 13213 2237
Ant-Contrib Web Server 79434 177
OpenYMSG Open Messenger 8821 233

B. Detecting Bug-fix Commits

To identify bug-fix commits of a candidate systems, we
extract the SVN commit messages by applying SVN log
command. A commit message describes the objective of the
associated commit and thus can be used to infer whether
the commit is a bug-fix commit. We apply the heuristics
proposed by Mockus and Votta [30] on the commit messages
to automatically identify bug-fix commits. This approach for
identifying bug-fix commits have been used in different earlier
studies [11], [18], [31], [32]. This technique identifies bug-fix
commits based on the occurrence of keywords in the commit
message from a predefined set. For example, if a commit
message contains the word "bug", it will be classified as a bug-
fix commit. This heuristic based approach may sometimes

results in false positives due to incorrect classification of
commits as bug-fix commits. However, earlier study [11] shows
that this approach can identify bug-fix commits with 87%
accuracy. Once the bug-fix commits are listed, we identify
the bug-fix commits where the cloned fragments have changed.
When any clone fragment is changed in a bug-fix commit, it
is reasonable to infer that changes to that clone is necessary
to fix the bug. We analyze and identify all the cloned methods
that are related to bug-fixes. We then analyze the stability
considering fine-grained change types associated with each of
the bug-related clone fragments to measure the extent of the
relationship between stability and bug-proneness.

C. Experimental Steps
We carry out our experimental analysis through some

processing steps. Figure 1 shows the schematic diagram of the
overall experimental analysis process. We briefly describe the
experimental steps as follows:

1) Preprocessing: For our study, we first extract all the
revisions of the subject systems from their corresponding SVN
repositories [33]. As our analysis focus on the changes to
source code only, we remove comments from the source files.
Pretty-printing of the the source files are then carried out to
eliminate the formatting differences using the tool ArtisticStyle
[34]. We extract the file modification history using SVN diff
command to list added, modified and deleted files in successive
revisions. This information is used to exclude the unchanged
files during change analysis to speed up the process.

2) Method Extraction and Origin Analysis: To analyze the
changes to cloned methods throughout all the revisions, we
extract method information from the successive revisions of
the source code. We store the method information (file path,
package name, class name, signature, start line, end line) in
a database to use for mapping changes to the corresponding
methods. Again, SVN keeps track of the files that are added,
deleted or modified and the history of changes to individual file
content are preserved as modification of lines. This line-level
change information is not sufficient to describe the evolution
of source code entities at higher granularity levels such as
classes or methods. As a result, to map changes to methods
throughout the development cycle, we need to map the methods
across the revisions. Therefore, we carry out origin analysis
of the methods on the revisions of the systems. We used same
approach for origin analysis as presented in study by Lazano
and Wermelinger [9]. Here, if a method is relocated in the
same file or if the method signature is changed, the method
is mapped by string comparison with the candidate methods
in new file using Strike A Match algorithm [35]. The origin
mapping information is used to map the classified changes and
cloning information back to the corresponding methods.

3) Change Extraction and Classification: The change anal-
ysis system in this study is implemented in Java based on the
change extraction and classification core of ChangeDistiller
[29]. The system imports copies of changed files from succes-
sive versions and uses JDT API of Eclipse for the extraction
of methods and extracting the differences between the copies



Fig. 1: Overall Analysis Process

of each of the files in any two successive revisions. The details
of change extraction and classification are as follows:

• Change Extraction: Code changes are extracted us-
ing ChangeDistiller classifier. ChangeDistiller extracts
changes by taking differences between two versions of
ASTs of the same file. The differences are represented as
a sequence of tree-edit operations. The generic operations
contain insert, delete, move and update operations on
the nodes in the AST. The tree-edit operations encoded
as edit scripts are then processed by ChangeDistiller to
classify extracted changes to fine-grained change types.
We have customized the ChangeDistiller classifier to suit
for analyzing local repository exported from SVN. To
extract source code changes, two successive versions of
the same file are selected from the source repository and
then are passed to the differencing engine of the change
classifier. The extracted changes are then passed to the
classifier for classification. The process is repeated for
all changed files (identified by SVN diff ) and for all the
revisions of the subject systems.

• Change Classification: Changes extracted by AST-
differencing of two successive revisions of source code
files are classified into fined-grained changes to source
code entities. Changes are classified according to the
defined taxonomy and are assigned the corresponding
levels of significance. For the analysis, classified changes
are mapped to the corresponding source code entities
based on the information extracted during the origin
analysis.

4) Mapping Change Data: After classification, the classified
changes are mapped to their corresponding source code
entities (methods) with the help of extracted origin mapping
information. We preserve the extracted, classified and mapped
changes into a database to measure metrics for the bug-
proneness of clones at the method level granularity.

5) Clone Detection: There are a great many clone detection
tools and techniques [36], [37], [38], [39], [40], [41], [42]
available including a recent one using deep learning [43].
However, for this study we use the hybrid clone detection
tool NiCad [44], [45]. NiCad is reported to have higher level
of precision and recall [46] and supports the detection of both
exact (Type 1) and near-miss (Type 2 and Type 3) clones. We
run NiCad on all revisions of the subject systems to detect
clones at method level granularity. We then store the clone
information in the database. Table III lists the parameter settings
for NiCad used for this study.

TABLE III: NiCad SETTINGS FOR THE STUDY

Parameters Values

Minimum Size 5 lines
Maximum Size 500 lines
Granularity Method
Threshold 0% (Type-1, Type-2), 30% (Type-3)
Identifier Renaming blindrename (Type-2, Type-3)

6) Mapping Changes to Clones: We use the extracted
method genealogies to map method information to the detected
clones in each revision of the software systems. We also map
classified fine-grained changes to the clones in each revision.
Using the list of identified bug-fix commits we separate the list
of buggy and non-buggy clones. Methods that were changed
in any of the bug-fix commits are considered as buggy clones
while other cloned methods are considered as non-buggy clones.

D. Measuring the Change Frequencies
Once the mapped change information for buggy and non-

buggy clones are available, we measure the stability (frequency
of changes) for buggy and non-buggy clones. We measure
stability with respect to different clone types considering the
different levels of significance of fine-grained syntactic changes.
We measure the frequency of changes as follows:

Let Rb be the set of bug-fix commits and S =
{low,medium, high, crucial} be the set of different levels
of change significance. Let Mb and Mn are the sets of buggy
and non-buggy cloned methods respectively. Then, we measure
the stability (frequency of changes) of buggy and non-buggy
clones using the following two equations:

(i) The frequency of changes to buggy cloned methods (CFb)
is measured as

CFb =

∑
miεMb,sεS

CCs(mi)∑
miεMb

AV GLOC(mi)
(1)

(ii) The frequency of changes to non-buggy cloned methods
(CFn) is measured as

CFn =

∑
miεMn,sεS

CCs(mi)∑
miεMn

AV GLOC(mi)
(2)

In Equation 1 and Equation 2,
• CCs(mi) represents the total number of changes to a

cloned method mi with change significance level s where
sεS.

• AV GLOC(mi)=
∑
rεRmi

LOCr(mi)

|Rmi |
represents the aver-

age size (LOC) of a cloned method. Here, LOCr(mi)
refers to the size (LOC) of the cloned method in revision



TABLE IV: COMPARATIVE FREQUENCIES OF CHANGES OF DIFFERENT LEVELS OF SIGNIFICANCE FOR BUGGY
AND NON-BUGGY CLONES OF ALL TYPES.

Change
Significance→

Low Medium High Crucial Overall

Systems ↓ CFb CFn CFb CFn CFb CFn CFb CFn CFb CFn

DNSJava 1.6546 0.5145 1.4196 0.5177 0.1471 0.1150 0.0723 0.0254 3.2936 1.1726
JabRef 0.7213 0.3496 0.4198 0.1768 0.0033 0.0031 0.0267 0.0163 1.1710 0.5458
Carol 0.7505 0.2740 0.6515 0.2542 0.0178 0.0153 0.0323 0.0248 1.4521 0.5684
Ant-Contrib 0.4325 0.2010 0.3249 0.1484 0.0172 0.0031 0.0038 0.0371 0.7785 0.3896
OpenYmsg 0.4211 0.2280 0.4044 0.0909 0.0069 0.0000 0.0014 0.0014 0.8338 0.3803
p-value 0.0366 0.0601 0.2113 0.7565 0.0601
Cohen’s d 1.3129 1.1964 0.2016 0.2828 1.1651
PS 0.82 0.80 0.55 0.58 0.80

CFb=Frequency of Changes in Buggy Cloned Methods
CFn=Frequency of Changes in Non-Buggy Cloned Methods, PS=Probability of Superiority

rεRmi where Rmi is the set of revisions a method mi

was cloned.
• A cloned method is considered buggy (i.e., miεMb) if
Rmi ∩ Rb 6= φ, i.e., the method mi has changed in at
least one of the bug-fix commits. Otherwise, the method
is a non-buggy (i.e., miεMn) cloned method.

Here, the change frequencies of buggy and non-buggy clones
simply represent the average number of changes per line of
buggy and non-buggy cloned methods respectively. The lower
the frequency of changes of a clone fragment, the higher will
be the stability of that clone fragment.

V. RESULTS

We present our experimental results in the following subsec-
tions to answer the research questions we defined in Section I.

Answer to RQ1: Is there any relationship between the
stability and the bug-proneness of code clones? If yes, is the
relationship significant?

Importance: Stability of clones is one of the most widely
studied aspects of analyzing the impacts of clones on software
systems. Studies [9], [25], [26], [16] show that clones are often
comparatively less stable meaning that clones change more
frequently than non-cloned code. It is intuitive that the more
frequently a code fragment is changed, the more maintenance
efforts it will require. Again, clone fragments changing more
frequently are likely to increase the chance of missing change
propagations and thus may introduce inconsistencies or bugs
in the software systems. Consequently, it is important to
investigate if and to what extent the stability of clones are
related to their bug-proneness.

Methodology: To analyze the relationships between the
stability and the bug-proneness of clones, we measure the
frequencies of changes for buggy and non-buggy clones as
described in Section IV-D for each of the subject systems.
First we determine the list of bug-fix commits by analyzing
the commit messages from SVN repositories (Section IV-B).
Then we identify the changed cloned methods from a selected
clone type. Then we count the number of changes of different
significance levels for each of the methods selected. We also
count the average size (LOC) of each of the cloned methods in
the list. We measure the total number of changes and the total
code size (LOC) for both buggy and non-buggy cloned methods.

Then we measure the corresponding frequencies of changes as
the ratio of total number changes to total code size in LOC for
both buggy and non-buggy clones for comparison. We measure
the frequency of changes regarding each level of significance
of change. We consider all clones without differentiating their
types for answering RQ1.

Table IV shows the frequencies of changes for buggy and
non-buggy clones for different levels of change significance.
Here, we observe that change frequencies for buggy clones for
all levels of change significance and for all the systems are
higher (i.e., CFb>CFn) than the corresponding frequencies
of changes of non-buggy clones (except for the crucial
significance in OpenYmsg). This shows that buggy clones tend
to be less stable than non-buggy clones. To analyze whether
there is any statistically significant relationship between the
stability and bug-proneness of clones, we carry out Mann-
Whitney Wilcoxon (MWW) test (two-tailed, at <0.05) [47].
From Table IV, we see that the p-value for low level of change
significance is 0.0366 which is less than 0.05. This implies
that the frequency of changes for buggy clones is significantly
higher than the frequency of changes in non-buggy clones
regarding changes of low significance. However, for other levels
of change significance (medium, high and crucial), although
the value of frequencies of changes for buggy clones are higher
than that of non-buggy clones, the p-values are greater than
0.05. This indicates that change frequencies for buggy and non-
buggy clones are not significantly different for those cases.

Again, the Mann-Whitney Wilcoxon test examines whether
the findings are likely due to chance and may not alone
fully express the magnitude of differences found. Thus, we
also calculate the effect size to analyze the magnitude of
differences in stability of buggy and non-buggy clones. Effect
size calculates the standardized mean difference between two
data sets. We measure the effect size (Cohen’s d [48]) from the
comparative frequencies of changes to buggy and non-buggy
clones as shown in Table IV. We see that the values of the
effect size for both low and medium significance levels are
1.3129 and 1.1964 respectively which belong to ’large’ category
as they are above 0.8. The effect size for high and crucial
significance levels are ’small’ with values 0.2016 and 0.2828
respectively. For easier interpretation of the effect size, we also
convert the effect size values to the probability of superiority



or ’Common Language Effect Size’ [49] as shown in Table IV.
The probability of superiority value for low significance level
is 0.82 meaning that if selected randomly, there is 82% chance
that buggy clones will have higher change frequency than non-
buggy clones. This probability values are lower for changes
of high (0.55) and crucial (0.58) significance and closer to
0.5 (0.5 refers to equal likelihood of having higher change
frequencies for buggy and non-buggy clones). We also analyzed
the comparative stability of buggy and non-buggy clones by
aggregating changes of all levels of significance (shown in
the ’overall’ column). Here, we observe that CFb>CFn for all
the subject systems and the effect size is large (1.1651). The
probability of superiority is 0.8 i.e., in 80% cases buggy clones
likely to have higher frequency of changes than non-buggy
clones. Thus, buggy clones tend to be less stable than the
non-buggy clones.

Summary- According to our experimental results,
buggy clones tend to have higher frequency of changes
compared to non-buggy clones i.e., buggy clones are less
stable than non-buggy clones. Thus, the stability and the
bug-proneness of clones are related and this relationship
is statistically significant for changes of low significance
level.

Answer to RQ2: To what extent the bug-proneness of different
types of clones are associated with their stability?

Importance: Different types of clones exhibit different
degree of bug-proneness [18]. Similarly, stability of different
types of clones may vary with the changes of different levels
of significance. Thus, an in-depth analysis of the relationships
between the stability of clones and their bug-proneness should
also investigate the degree of the relationships regarding
different clones types. This clone type centric analysis is
likely to reveal how the relationship between stability and
bug-proneness of clones varies for different types of clones.
This analysis is important to identify what types of clones to
be comparatively more bug-prone and need to be prioritized
in clone management activities.

Methodology: To answer RQ2, we analyze the comparative
frequencies of changes of different levels of significance for
buggy and non-buggy clones considering clone types separately.
We measure the frequency of changes for buggy and non-buggy
clones in the same way as in RQ1. However, we measure the
stability metrics for distinct types of clones (Type 1, Type 2 and
Type 3) separately. The results for the comparative frequencies
of changes of buggy and and non-buggy clone for Type 1,
Type 2 and Type 3 clone are presented in Table V, Table VI,
Table VII respectively.

For Type 1 clones (Table V), the frequency of changes for
buggy clones are higher than that of non-buggy clones for
all subject systems when we consider changes of low and
medium significance (i.e., CFb>CFn). However, for changes
of high significance in JabRef and Carol and for changes
of crucial significance in Ant-Contrib and OpenYmsg we
observe CFb<CFn. We observe that for changes of low and

medium significance, the likelihood of buggy Type 1 clones
to have higher frequencies than non-buggy Type 1 clones are
76% and 78% respectively. However, we do not observe any
statistically significant relationship between the stability and
the bug-proneness for Type 1 clones.

For Type 2 clones (Table VI), we observe that the frequency
of changes for buggy clones are higher than that of non-
buggy clones for all the subject systems regarding changes of
low and medium significance. For comparative frequencies of
buggy and non-buggy Type 2 clones with changes of low and
medium significance, we get the p-values 0.0366 and 0.0121
respectively from Mann-Whitney Wilcoxon (MWW) test (two-
tailed, at <0.05). These p-values imply that the frequency
of changes in buggy Type 2 clones are significantly higher
than the frequency of changes in non-buggy Type 2 clones
regarding changes of low and medium significance. In addition,
for changes of low and medium significance, the values of
effect size are ’large’ (1.6283 and 1.6916 respectively) with
the corresponding likelihood of 87% and 88% that buggy Type
2 clones have higher frequency of changes than non-buggy
Type 2 clones. However, we did not observe any statistically
significant differences between CFb and CFn for changes of
high and crucial significance.

As shown in Table VII, the frequencies of changes for Type
3 buggy clones are higher than that of non-buggy Type 3
clones for all the subject systems regarding changes of low and
medium significance. For Type 3 clones with changes of low
significance, the p-value for Mann-Whitney Wilcoxon (MWW)
test (two-tailed, at <0.05) is 0.0366. This implies that for
changes of low significance, the frequency of changes in buggy
Type 3 clones are significantly higher than that of non-buggy
Type 3 clones. The effect size d for comparative frequencies for
changes for buggy and non-buggy Type 3 clones is also ’large’
(1.2916) for changes of low significance. For low significance,
buggy Type 3 clones have 82% likelihood of having higher
frequency of changes than non-buggy Type 3 clones.

Figure 2 represents the comparative likelihood (%) of buggy
clones to have higher frequencies for changes than non-buggy
clones with respect to different clones types. We use the
probability of superiority from the effect size analysis for
comparative change frequencies of buggy and non-buggy clones.
We consider probabilities of superiority for all four levels
of change significance with respect to each type of clones.
From Figure 2 we see that for Type 1 clones, the probability
of superiority values regarding changes of low and medium
significance are 76% and 78% respectively. On the other hand
Type 2 clones have the highest likelihood (87% and 88%
respectively) of buggy clones to have higher frequency of
changes than non-buggy clones regarding changes of low and
medium significance. Type 3 clones also have 82% and 88%
likelihood of buggy clones to have higher frequency of changes
than non-buggy clones. However, for all clone types while
considering the changes of high and crucial significance, the
likelihood of buggy and non-buggy clones are closer to 50%.
This indicates that the probability of buggy and non-buggy
clones to have higher frequency of changes are similar.



TABLE V: COMPARATIVE FREQUENCIES OF CHANGES OF DIFFERENT LEVELS OF SIGNIFICANCE FOR BUGGY
AND NON-BUGGY CLONES OF TYPE 1.

Change
Significance→

Low Medium High Crucial Overall

Systems ↓ CFb CFn CFb CFn CFb CFn CFb CFn CFb CFn

DNSJava 1.6438 0.4373 1.4155 0.4373 0.0918 0.0435 0.0787 0.0239 3.2297 0.9422
JabRef 0.6710 0.3409 0.3861 0.1571 0.0021 0.0026 0.0190 0.0082 1.0783 0.5088
Carol 0.3235 0.2102 0.5202 0.1564 0.0087 0.0587 0.0393 0.0391 0.8918 0.4643
Ant-Contrib 0.4299 0.2571 0.3277 0.1959 0.0162 0.0041 0.0011 0.0490 0.7749 0.5061
OpenYmsg 0.4422 0.2262 0.2802 0.0524 0.0103 0.0000 0.0000 0.0024 0.7326 0.2810
p-value 0.0601 0.0601 0.6745 0.8337 0.0601
Cohen’s d 1.0492 1.1062 0.1226 0.1147 1.0379
PS 0.76 0.78 0.52 0.52 0.76

CFb=Frequency of Changes in Buggy Cloned Methods
CFn=Frequency of Changes in Non-Buggy Cloned Methods, PS=Probability of Superiority

TABLE VI: COMPARATIVE FREQUENCIES OF CHANGES OF DIFFERENT LEVELS OF SIGNIFICANCE FOR BUGGY
AND NON-BUGGY CLONES OF TYPE 2.

Change
Significance→

Low Medium High Crucial Overall

Systems ↓ CFb CFn CFb CFn CFb CFn CFb CFn CFb CFn

DNSJava 1.0859 0.3979 0.9594 0.3650 0.1186 0.1885 0.0422 0.0299 2.2061 0.9814
JabRef 0.8192 0.5251 0.4398 0.2590 0.0000 0.0035 0.0751 0.0987 1.3341 0.8863
Carol 1.3994 0.2267 1.0694 0.2713 0.0293 0.0167 0.0146 0.0056 2.5127 0.5204
Ant-Contrib 0.4200 0.0455 0.3800 0.1667 0.0000 0.0000 0.0000 0.0606 0.8000 0.2727
OpenYmsg 0.4211 0.2880 0.4044 0.0909 0.0069 0.0000 0.0014 0.0014 0.8338 0.3803
p-value 0.0366 0.0121 1.000 0.6031 0.0949
Cohen’s d 1.6283 1.6916 -0.1567 -0.3414 1.5519
PS 0.87 0.88 0.55 0.58 0.87

CFb=Frequency of Changes in Buggy Cloned Methods
CFn=Frequency of Changes in Non-Buggy Cloned Methods, PS=Probability of Superiority

TABLE VII: COMPARATIVE FREQUENCIES OF CHANGES OF DIFFERENT LEVELS OF SIGNIFICANCE FOR BUGGY
AND NON-BUGGY CLONES OF TYPE 3.

Change
Significance→

Low Medium High Crucial Overall

Systems ↓ CFb CFn CFb CFn CFb CFn CFb CFn CFb CFn

DNSJava 1.2390 0.7305 0.9372 0.8774 0.3268 0.3449 0.0590 0.0292 2.5620 1.9820
JabRef 0.9494 0.3227 0.5978 0.1779 0.0039 0.0027 0.0357 0.0277 1.5869 0.5310
Carol 0.7698 0.2874 0.6624 0.2558 0.0186 0.0135 0.0312 0.0233 1.4820 0.5800
Ant-Contrib 0.3735 0.1159 0.3550 0.0454 0.0078 0.0000 0.0029 0.0202 0.7391 0.1814
OpenYmsg 0.3918 0.2783 0.5623 0.0569 0.0000 0.0000 0.0000 0.0000 0.9541 0.3353
p-value 0.0366 0.0949 0.6744 0.4654 0.0949
Cohen’s d 1.2916 1.1945 -0.0054 0.2903 1.0386
PS 0.82 0.80 0.50 0.55 0.76

CFb=Frequency of Changes in Buggy Cloned Methods
CFn=Frequency of Changes in Non-Buggy Cloned Methods, PS=Probability of Superiority

From the above clone type based analysis, we observe that
although the frequency of changes tend to be higher in buggy
clones than in the non-buggy clones for both exact (Type 1)
and near-miss(Type 2 and Type 3) clones, the bug-proneness
of Type 2 and Type 3 clones have stronger relationships with
their stability. The significance of the relationship between
the bug-proneness of Type 2 and Type 3 clones are mostly
influenced by changes of low and medium significance.

Summary- Our results on clone type centric analysis
show that the bug-proneness of Type 2 and Type 3 clones
are significantly related to the stability of clones and this
relationship is mostly influenced by the changes of low
and medium significance. The bug-proneness of Type 1
clones does not exhibit significant relationship with the
stability.



Fig. 2: Likelihood (%) buggy clones having higher frequencies
of changes than non-buggy clones regarding different types of
clones.

Answer to RQ3: Do the frequencies of changes of different
significance levels differently affect the bug-proneness of
clones?

Importance: Changes of different levels of significance
have different impacts on software systems both in terms of
the modification of the system functionality and the extents of
required change propagation. Thus, for better understanding the
relationships between bug-proneness and stability of clones,
we need to investigate how changes of different levels of
significance influence this relationship. Therefore, we analyze
the comparative stability of buggy and non-buggy clones with
respect to each of the four levels of change significance.

Methodology: To answer RQ3, we consider the comparative
frequencies of changes for the buggy and non-buggy clones
form Table V, Table VI and Table VII regarding each type of
change significance. For changes of low significance and for
all types (Type 1 , type 2 and Type 3) of clones, buggy clones
have higher frequencies of changes than non-buggy clones.
However, for changes of low significance, the comparative
frequencies of changes for buggy and non-buggy clones are
statistically significant for only for Type 2 and Type 3 clones.
For changes of medium significance, all types of clones tend to
have higher frequencies of changes for buggy clones compared
to non-buggy clones. However, only Type 2 clones show a
statistically significant difference in the frequencies of changes
in buggy and non-buggy clones. For changes of high and crucial
significance, none of the clone types exhibit any significant
differences between the frequency of changes in buggy and non-
buggy clones. Thus, changes of low and medium significance
likely to influence the relationship between the stability and
the bug-proneness of clones.

Figure 3 represents the comparative likelihood (%) of
buggy clones to have higher frequencies for changes than
non-buggy clones with respect to different levels of changes
significance. We use the probability of superiority from the
effect size analysis for comparative change frequencies of
buggy and non-buggy clones. From Figure 3 we see that
for changes of low significance, the probability of superiority
values regarding Type 1, Type 2 and Type 3 clones are 76%,
87% and 82% respectively. On the other hand, for changes

Fig. 3: Likelihood (%) buggy clones having higher frequencies
of changes than non-buggy clones regarding different levels of
change significance.

of medium significance, the probability of superiority values
regarding Type 1, Type 2 and Type 3 clones are 78%, 88%
and 80% respectively. These imply that the frequencies of
changes to buggy clones are comparatively higher than that
of non-buggy clones regarding changes of low and medium
significance for all clone types. However, Type 2 clones have
the highest probability values for buggy clones to have higher
frequency of changes than non-buggy clones for changes of
low and medium significance. For changes of high and crucial
significance, none of the clone types exhibit higher likelihood
of buggy clones to have higher frequencies of changes than
non-buggy clones. Here the negative value for d indicates the
direction of mean difference.

Type 2 clones have the highest likelihood (87% and 88%
respectively) of buggy clones to have higher frequency of
changes than non-buggy clones regarding changes of low and
medium significance. Type 3 clones also have 82% and 88%
likelihood of buggy clones to have higher frequency of changes
than non-buggy clones. However, for all clone types while
considering the changes of high and crucial significance, the
likelihood of buggy and non-buggy are closer to 50% which
indicates that the probability of buggy and non-buggy clones
to have higher frequency of changes are similar.

Summary- The bug-proneness of clones tend exhibit
stronger relationship with the stability regarding the
changes of low and medium significance. Thus, the
relationship between the stability and the bug-proneness
of clones is most likely to be influenced by changes of low
and medium significance.

VI. THREATS TO VALIDITY

The change analysis in this study is based on the change
extraction and classification engine of the ChangeDistiller.
Although ChangeDistiller is reported to have good performance,
the validity of the outcomes of the study is dependent upon
the accuracy of the core classifier used.



The detection of bug-fix commits in our study is based
on the technique proposed by Mockus and Votta [30]. Same
technique has also been used in several earlier studies [11],
[18], [31], [32], [50]. Although this heuristics based technique
may result in some incorrect identification of bug-fix commits,
earlier study by Barbour et al. [11] shows that the probability
is low. Their study reports that the accuracy of the technique
to identify bug-fix commits is 87%.

We used NiCad, a hybrid clone detection tool which detects
Type 1, Type 2 and Type 3 clones with high precision and recall.
Again, different settings for clone detection tool may result in
different stability scenarios because of the variations in clone
detection results. This is termed as confounding configuration
choice problem [51]. However, the NiCad settings we used are
considered standard [1] and are close enough to the optimal
configuration settings identified in recent study [51] for NiCad
to detect clones in Java systems. This is likely to mitigate the
potential adverse effects of the configuration settings on our
findings.

We selected subject systems with diversified size, number of
revisions, length of evolution and application domain to avoid
potential biasing. However, due to the limitation of existing
change classifier our study is limited to Java systems only.
Although Java is considered to be a widely used language with
a comprehensive set of language features, inclusion of subject
systems of other languages might help in more generalization
of the findings.

VII. RELATED WORK

Many studies have investigated the bug-proneness of cloned
code from different perspectives. Wagner et al. [20] investigated
the relationship between Type 3 clones and faults. This study
shows that a considerable proportion (17%) of Type 3 clones
are associated with faults. Mondal et al. [18] investigated the
bug-proneness of different types of clones and reported that
Type 3 clones are more bug-prone compared to Type 1 and
Type 2 clones. Although, this study gives important insights
regarding the bug-proneness of clones of different types, the
study does not consider fine-grained change information for
the analysis as we did.

Mondal et al. in a recent study [31] observed that change-
prone clones are not necessarily to be bug-prone. They
measured change frequency as the number of commits a
particular clone fragment was changed before a given bug-
fix commit. Our study on the other hand considers fine-grained
change types and their significance. Our change frequency
metrics consider the actual number of fine-grained changes
per line of cloned code. Thus, our analysis of relationships
between stability and bug-proneness is different from the study
by Mondal et al. [31].

Li et al. [13] proposed the tool CP-Miner that uses data
mining techniques to detect copy-baste clones and bugs in
large scale software systems. Li and Ernst [14] studied bug-
proneness of clones and developed a tool called CBCD based on
their study. For a given buggy code fragment, CBCD searches
semantically identical copies of the given code fragment. Inoue

et al. [52] developed a tool called CloneInspector to detect
inconsistent changes to code clones and associated latent bugs
in software systems.

Barbour et al. [11] examined late propagation of clones (Type
1 and Type 2) and investigated the extent to which different
types of late propagation are related to bugs and inconsistencies
in software systems. Aversano et al. [22] reported that clones
evolve consistently in most cases while late propagation may
introduce faults. Thummalapenta et al. [23] show that clones
with late propagation are more bug-prone than others.

Xie et al. [19] studied the fault-proneness of clones with
respect to mutation and migration of clones during evolution.
They conclude that both mutation of a clone group to Type 2 or
Type 3 clones and increasing distance between clone fragments
in a clone group increase the risk for faults. Steidl and Göde
[21] proposed a machine learning approach to investigate how
different features of clones can be used to automatically identify
incomplete bug-fixes. Göde and Koschke [53] reported that
changes to clones are mostly infrequent and a small proportion
(14.8%) of changes are unintentionally inconsistent.

Sajnani et al. [54] analyzed the comparative bug-proneness
of cloned and on-cloned code on 31 Java projects. They report
that the density of bugs are comparatively less in clones than
non-cloned code. Rahman et al. [6] observed that clones may
be less defect-prone than non-cloned code which is opposite
to the findings of the study by Juergens et al. [8].

The existing studies reveal important insights regarding the
techniques for the detection [13], [17] of bug-prone clones,
identifying features and types of bugs [17] and analyzing
bug-proneness of different types of clones [18] from the
perspective of consistent evolution. However, none of the
existing studies consider fine-grained syntactic changes despite
the types of changes mostly define the extent of change
propagation to related cloned and non-cloned fragments. In this
study, we extract fine-grained change information and analyze
the relationship between the stability and the bug-proneness of
clones. We evaluate stability as a potential influencing factor
to the bug-proneness of clones and analyze the bug-proneness
of Type 1, Type 2 and Type 3 clones.

VIII. CONCLUSION

This study investigates the relationships between the stability
and the bug-proneness of clones considering fine-grained
syntactic change types and their significance extracted using
ChangeDistiller. We automatically identify the bug-fix commits
by analyzing the commit messages from the SVN repositories.
We detect Type 1, Type 2 and Type 3 clones using the
hybrid cloned detection tool NiCad. Clones that change in
any of the bug-fix commits are identified as buggy clones.
Our experimental results on five diverse open source Java
systems show that buggy clones tend to have higher frequency
of changes compared to non-buggy clones. This relationship is
often significant especially when changes of low and medium
significance are considered. Again, the stabilities of Type 2
and Type 3 clones have comparatively stronger association
with the bug-proneness than Type 1 clones. The relationships



between the stability and bug-proneness of different types of
clones are more likely influenced by the changes of low and
medium significance. Our findings regarding the relationships
between the stability and bug-proneness of clones has the
potential to identify bug-prone clones based on their change-
proneness. Thus, the correspondence between the stability and
bug-proneness of clones might be useful to identify and to
prioritize important clones for management. Our experimental
data are available on-line [55].
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