
Comparative Stability of Cloned and Non-cloned Code: An
Empirical Study

Manishankar Mondal1, Chanchal K. Roy1, Md. Saidur Rahman1, Ripon K. Saha1, Jens
Krinke2, Kevin A. Schneider1

1Department of Computer Science, University of Saskatchewan, Canada
2University College London, UK

1{mshankar.mondal, chanchal.roy, saeed.cs, ripon.saha, kevin.schneider}@usask.ca
2j.krinke@ucl.ac.uk

ABSTRACT
Code cloning is a controversial software engineering practice
due to contradictory claims regarding its effect on software
maintenance. Code stability is a recently introduced mea-
surement technique that has been used to determine the
impact of code cloning by quantifying the changeability of a
code region. Although most of the existing stability analy-
sis studies agree that cloned code is more stable than non-
cloned code, the studies have two major flaws: (i) each study
only considered a single stability measurement (e.g., lines of
code changed, frequency of change, age of change); and, (ii)
only a small number of subject systems were analyzed and
these were of limited variety.

In this paper, we present a comprehensive empirical study
on code stability using three different stability measuring
methods. We use a recently introduced hybrid clone detec-
tion tool, NiCAD, to detect the clones and analyze their
stability in four dimensions: by clone type, by measuring
method, by programming language, and by system size and
age. Our four-dimensional investigation on 12 diverse sub-
ject systems written in three programming languages consid-
ering three clone types reveals that: (i) Type-1 and Type-2
clones are unstable, but Type-3 clones are not; (ii) clones
in Java and C systems are not as stable as clones in C#
systems; (iii) a system’s development strategy might play a
key role in defining its comparative code stability scenario;
and, (iv) cloned and non-cloned regions of a subject system
do not follow a consistent change pattern.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, Reverse Engineering and
Reengineering.

General Terms
Measurement and Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2012 ACM 978-1-4503-0857-1/12/03 ...$10.00.

Keywords
Code Stability; Modification Frequency; Average Last Change
Date; Average Age; Clone Types

1. INTRODUCTION
Frequent copy-paste activity by programmers during soft-

ware development is common. Copying a code fragment
from one location and pasting it to another location with
or without modifications cause multiple copies of exact or
closely similar code fragments to co-exist in software sys-
tems. These code fragments are known as clones. Whatever
may be the reasons behind cloning, the impact of clones on
software maintenance and evolution is of great concern.

The common belief is that, the presence of duplicate code
poses additional challenges to software maintenance by mak-
ing inconsistent changes more difficult, introducing bugs and
as a result increasing maintenance efforts. From this point of
view, some researchers have identified clones as “bad smells”
and their studies showed that clones have negative impact on
software quality and maintenance [7, 14, 15]. On the other
hand, there has been a good number of empirical evidence
in favour of clones concluding that clones are not harmful
[1, 6, 9, 10, 18]. Instead, clones can be useful from different
points of views [8].

A widely used term to assess the impact of clones on soft-
ware maintenance is stability [6, 11, 12, 14]. Because if
cloned code is more stable (changes less frequently) as com-
pared to non-cloned code during software evolution, it can
be concluded that cloned code does not significantly increase
maintenance efforts. Different researchers have defined and
evaluated stability from different viewpoints which can be
broadly divided into two categories:

(1) Stability measurement in terms of changes:
Some methodologies [6, 11, 14, 5] have measured stability
by quantifying the changes to a code region using two gen-
eral approaches - (i) determination of the ratio of the number
of lines added, modified and deleted to the total number of
lines in a code region (cloned or non-cloned) [11, 14, 5] and
(ii) determination of the frequency of modifications to the
cloned and non-cloned code [6] with the hypothesis that the
higher the modification frequency of a code region is the less
stable it is.

(2) Stability measurement in terms of age: This
approach [12] determines the average last changed dates of
cloned and non-cloned code of a subject system. The hy-
pothesis is that the older the average last change date of a
code region is, the more stable it is.

Table 1: Research Questions and Dimensions
Research Questions Dimensions

1 Do different types of clones exhibit
different stability scenarios? Which
type(s) of clones is (are) more vul-
nerable to the system’s stability?

Type centric

2 Why and to what extent do the de-
cisions made by different methods on
the same subject system differ?

Method cen-
tric

3 Do different programming languages
exhibit different stability scenarios?

Language
centric

4 Is there any effect of system sizes and
system ages on the stability of cloned
and non-cloned code?

System cen-
tric

To measure the comparative stability of cloned and non-
cloned code, Krinke carried out two case studies [11, 12].
In his first study, he calculated the comparative instabilities
caused by cloned and non-cloned regions in terms of addi-
tion, deletion and modification in these regions whereas, in
most recent study [12] (elaborated in Section 3.2), he deter-
mined the average last change dates of the regions. Both of
these studies suggest cloned code to be more stable than non-
cloned code. Hotta et al., in a recent study [6], calculated the
modification frequencies of cloned and non-cloned code and
found that the modification frequency of non-cloned code is
higher than that of cloned code.

Though all of the studies [6, 11, 12, 5] generally agreed on
the higher stability of cloned code over non-cloned code, we
have conducted our research emphasizing on the following
lackings of these studies.

(1) None of the studies was conducted considering all as-
pects of stability.

(2) General decisions were taken without considering a
wide variety of subject systems.

(3) No study addresses the comparative stabilities as well
as impacts of different clone types. This issue is important
in the sense that, different types of clones might have dif-
ferent impacts (good or bad) on maintenance. Based on the
variability of impacts, we might need to take care of clones of
some specific types while leaving others without headache.

(4) Instabilities of clones on the basis of language vari-
ability were not measured. But, this information might be
very important from managerial perspectives. The projects
being developed using those programming languages which
exhibit higher instabilities of clones might be instructed to
be taken care of with more importance regarding cloning
activities.

Focusing on all these issues we have performed an in-depth
investigation considering three clone types using three meth-
ods including those proposed by Krinke [12] and Hotta et
al.[6] in the form of four research questions listed in Table 1
from four dimensions. The third method in our investigation
is our proposed variant of Krinke’s method [12]. The reasons
behind introducing this variant are elaborated in Section 3.3
For detecting clones, we used the recently introduced hybrid
clone detection tool NiCad [3] that combines the strengths
and overcomes the limitations of both text-based and AST-
based clone detection techniques and exploits novel applica-
tions of a source transformation system to yield highly ac-
curate identification of Type-1, Type-2 and Type-3 cloned
code in software systems [16].

Our experimental results on three clone types of 12 sub-
ject systems written in three languages (Java, C and C#)

reveal that, Type-1 and Type-2 clones are potential threats
to a system’s stability while Type-3 clones are not. Our lan-
guage centric analysis suggests that, clones in Java and C
systems exhibit higher level of instabilities as compared to
those of C# systems. This is also statistically supported by
the Fisher’s Exact Test [4] results. We have also found that,
cloned and non-cloned regions of subject systems do not fol-
low any consistent change pattern. Moreover, the develop-
ment strategy may have a strong impact on the comparative
stability of cloned vs. non-cloned code.

The rest of the paper is organized as follows: Section 2
outlines the relevant research, Section 3 elaborates on the
candidate methods, experimental setup is described in Sec-
tion 4 and Section 5 contains the experimental results. A
detailed analysis of the experimental results is presented in
Section 6 while Section 7 mentions some possible validity
threats of our study followed by Section 8 that contains con-
clusion and future directions.

2. RELATED WORK
Over the last several years, the impact of clones has been

an area of focus for software engineering research resulting
in a significant number of studies and empirical evidence.
Kim et al. [9] introduced clone genealogy model to study
clone evolution and applied the model on two medium sized
Java systems. They showed that - (i) refactoring of clones
may not always improve software quality and (ii) immediate
refactoring of short-lived clones is not required and that such
clones might not be harmful. Saha et al. [18] extended their
work by extracting and evaluating code clone genealogies at
the release level of 17 open source systems and reported that
most of the clones do not require any refactoring effort in
the maintenance phase.

Kapser and Godfrey [8] strongly argued against the con-
ventional belief of harmfulness of clones by investigating dif-
ferent cloning patterns. They showed that - (i) about 71%
of the cloned code has a kind of positive impact in soft-
ware maintenance and (ii) cloning can be an effective way
of reusing stable and mature features in software evolution.

Lozano and Wermelinger et al. performed two studies [14,
15] on the impact of clones on software maintenance consid-
ering method level granularities using CCFinder [2]. Both of
their studies, though conducted on a small number of Java
systems (4 in [14] and 5 in [15]), reported that clones have
harmful impact on the maintenance phase because clones
often increase maintenance efforts and are vulnerable to sys-
tem’s stability.

Juergens et al. [7] studied the impact of clones on large
scale commercial systems and suggested that - (i) incon-
sistent changes occurs frequently with cloned code and (ii)
nearly every second unintentional inconsistent change to a
clone leads to a fault. Aversano et al. [1] on the other hand,
carried out an empirical study that combines the clone de-
tection and co-change analysis to investigate how clones are
maintained during evolution or bug fixing. Their case study
on two subject systems confirmed that most of the clones
are consistently maintained. Thummalapenta et al. [19] in
another empirical study on four subject systems reported
that most of the clones are changed consistently and other
inconsistently changed fragments evolve independently.

In a recent study [5] Göde et al. replicated and extended
Krinke’s study [11] using an incremental clone detection
technique to validate the outcome of Krinke’s study. He

supported Krinke by assessing cloned code to be more sta-
ble than non-cloned code in general.

Code stability related research conducted by Krinke [11,
12] and Hotta et al. [6] have already been mentioned in the
introduction and elaborated later in Section 3.

In our empirical study, we have replicated Krinke’s [12]
and Hotta et al.’s [6] methods and implemented our variant
of Krinke’s method [12] using NiCad [3]. Our experimental
results and analysis of those results reveal inportant informa-
tion about comparative stabilities and harmfulness of three
clone types along with language based stability trends.

3. STABILITY MEASURING METHODS
This section discusses the three methods and associated

metrics that we have implemented for our investigation. These
methods follow different approaches and calculate different
metrics but their aim is identical in the sense that each of
these methods takes the decision about whether cloned code
of a subject system is more stable than its non-cloned code.
For this reason we perform a head-to-head comparison of
the stability decisions taken by the metrics of these three
methods and focus on the implementation and strategic dif-
ferences that cause decision dissimilarities.

3.1 Modification Frequencies [6]
Hotta et al. [6] have calculated two metrics: (i) MFd

(Modification Frequencies of Duplicate code) and (ii) MFn
(Modification Frequencies of Non-Duplicate code) consider-
ing all the revisions of a given codebase extracted from SVN.
Their metric calculation strategy involves identification and
checking out of relevant revisions of a subject system, nor-
malization of source files by removing blank lines, comments
and indents, detection and storing of each line of duplicate
code into the database. The differences between consecu-
tive revisions are also identified and stored in the database.
Then, MCd (Modification Count in Duplicate code region)
and MCn (Modification Count in Non-Duplicate code re-
gion) are determined exploiting the information saved in the
database and finally MFd and MFn are calculated using the
following equations [6]:

MFd =
∑rεRMCd(r)

∣R∣
∗
∑rεR LOC(r)

∑rεR LOCd(r)
(1)

MFn =
∑rεRMCn(r)

∣R∣
∗
∑rεR LOC(r)

∑rεR LOCn(r)
(2)

Here, R is the number of revisions of the candidate subject
system. MCd(r) and MCn(r) are the number of modifica-
tions in the duplicate and non-duplicate code regions respec-
tively between revisions r and (r+1). MFd and MFn are the
modification frequencies of the duplicate and non-duplicate
code regions of the system. LOC(r) is the number of LOC
in revision r. LOCd(r) and LOCn(r) are respectively the
numbers of duplicate and non-duplicate LOCs in revision r.

3.2 Average Last Change Date [12]
Krinke [12] has introduced a new concept of code stability

measurement by calculating the average last change dates of
cloned and non-cloned regions of a codebase using the blame
command of SVN. He considers only a single revision (gener-
ally the last revision) unlike the previous method proposed
by Hotta et al. [6] that considers all the revisions up to the
last one. The blame command on a file retrieves each line’s

revision and date when the line was last changed. He calcu-
lates the average last change dates of cloned and non-cloned
code from the file level and system level granularities.
File level metrics: (1) Percentage of files where the av-
erage last change date of cloned code is older than that of
non-cloned code (PFc) (cloned code is older than non-cloned
code) in the last revision of a subject system. (2) Percent-
age of files where the average last change date of cloned code
is newer than that of non-cloned code (PFn) (cloned code
is younger than non-cloned code) in the last revision of a
subject system.
System level metrics: (1) Average last change date of
cloned code (ALCc) for the last revision of a candidate sub-
ject system. (2) Average last change date of non-cloned code
(ALCn) for the last revision of a candidate subject system.

To calculate file level metrics in our implementation, we
considered only the analyzable source files which exclude two
categories of files from consideration: (i) files containing no
cloned code and (ii) fully cloned files. But, system level met-
rics were calculated considering all source files. According
to this method, the older the code is the more stable it is.

Calculation of average last change date: Suppose
five lines in a file correspond to 5 revision dates (or last
change dates) 01-Jan-11, 05-Jan-11, 08-Jan-11, 12-Jan-11,
20-Jan-11. The average of these dates was calculated by
determining the average distance (in days) of all other dates
from the oldest date 01-Jan-11. This average distance is
(4+7+11+19)/4 = 10.25 and thus the average date is 10.25
days later to 01-Jan-11 yielding 11-Jan-11.

3.3 Proposed Variant of Krinke’s Method
We have proposed a variant of Krinke’s methodology [12]

to analyze the longevity (stability) of cloned and non-cloned
code by calculating their average ages. We also have used
the blame command of SVN to calculate the age for each of
the cloned and non-cloned lines in a subject system.

Suppose we have several subject systems. For a specific
subject system we work on its last revision R. By applying
a clone detector on revision R, we can separate the lines
of each source file into two disjoint sets: (i) containing all
cloned lines and (ii) containing all non-cloned lines. Differ-
ent lines of a file contained in R can belong to different pre-
vious revisions. If the blame command on a file assigns the
revision r to a line x, then we understand that line x was pro-
duced in revision r and has not been changed up to the last
revision R. We denote the revision of x as r = revision(x).
The creation date of r is denoted as date(r). In the last
revision R, we can determine the age (in days) of this line
by the following equation:

age(x) = date(R) − date(revision(x)) (3)

We have calculated the following two average ages for
cloned and non-cloned code from system level granularity.

(1) Average age of cloned code (AAc) in the last revision
of a subject system. This is calculated by considering all
cloned lines of all source files of the system.

(2) Average age of non-cloned code (AAn) in the last re-
vision of a subject system. AAn is calculated by considering
all non-cloned lines of all source files of the system.

According to our method, a higher average age is the im-
plication of higher stability.

We have introduced this variant emphasizing on the fol-
lowing issues in Krinke’s method.

(1) blame command of SVN gives the revisions as well as

revision dates of all lines of a source file including its com-
ments and blank lines. Krinke’s method does not exclude
blank lines and comments from consideration. This might
play a significant role on skewing the real stability scenario.

(2) As indicated in the average last change date calcula-
tion process, Krinke’s method often introduces some round-
ing errors in its results. This might force the average last
change dates of cloned and non-cloned code to be equal
(There are examples in Section 5).

(3) The method’s dependability on the file level metrics
sometimes alters the real stability scenario. Type-3 case of
‘Greenshot’ is an example where both Hotta et al.’s method
and our proposed variant take similar decision (non-cloned
code more stable) but, file level metrics of Krinke’s method
alters this decision. Here, system level metrics (ALCs) of
Krinke’s method could not take decision because, the values
of the metrics corresponding to cloned (ALCc) and non-
cloned (ALCn) code were same.

Our proposed variant overcomes these issues while calcu-
lating stability results. It does not calculate any file level
metrics because its system level metrics are adequate in de-
cision making. This should be mentioned that, Hotta et al.’s
method also ensures the exclusion of blank lines and com-
ments from consideration through some preprocessing prior
to clone detection.

3.4 Major Difference Between Hotta’s Method
and the Other Two Methods

Hotta et al.’s method considers all modifications to a re-
gion from its creation and it does not matter when the mod-
ifications to the region are applied. The other two methods
only consider the last modification (which can also be the
creation) and do not consider any modification before.

Suppose a file contains two lines denoted by x and y at
revision 1 and this file passed through 100 commits during
which x had 5 changes and y had only one change. Let the
change on y have occurred at the 99th commit and the last
change on x occurred at the 50th commit. A blame com-
mand on the last revision (100) of this file will assign x with
revision 50 where y will be assigned with revision 99. Ac-
cording to both Krinke’s method and our variant, x is older
than y because the revision date corresponding to revision
50 is much older than the revision date corresponding to
revision 99 and thus, x will be suggested to be more sta-
ble than y by these two methods. On the other hand, the
method proposed by Hotta et al. counts the number of mod-
ifications occurred on these two lines. Consequently, Hotta
et al. will suggest y to be more stable than x because the
modification frequency of x will obviously be greater than
that of y.

4. EXPERIMENTAL SETUP
4.1 Clone Detection

We used the NiCad [3, 17] clone detection tool to de-
tect clones in the subject systems in our study. NiCad can
detect both exact and near-miss clones at the function or
block level of granularity. We detected block clones with a
minimum size of 5 LOC in the pretty-printed format that
removes comments and formatting differences. We used the
NiCad settings mentioned in Table 2 for detecting three
types of clones. The dissimilarity threshold means that the
clone fragments in a particular clone class may have dissim-
ilarities up to that particular threshold value between the

Table 2: NiCad Settings
Clone
Types

Identifier Re-
naming

Dissimilarity
Threshold

Type 1 none 0%
Type 2 blindrename 0%
Type 3 blindrename 20%

Table 3: Subject Systems
Systems Domains LOC Rev

J
a
v
a

DNSJava DNS protocol 23,373 1635
Ant-
Contrib

Web Server 12,621 176

Carol Game 25,092 1699
Plandora Project Management 79,853 32

C

Ctags Code Def. Generator 33,270 774
Tidyfornet Wrapper for Tidy 123,409 55
QMail Ad-
min

Mail Management 4,054 317

Hashkill Password Cracker 83,269 110

C
#

GreenShot Multimedia 37,628 999
ImgSeqScan Multimedia 12,393 73
Capital
Resource

Database Management 75,434 122

MonoOSC Formats and Protocols 18,991 355

Rev = Revisions

pretty-printed and/or normalized code fragments. We set
the dissimilarity threshold to 20% with blind renaming of
identifiers for detecting Type-3 clones. For the above set-
tings NiCad was shown to have high precision and recall
[16].

4.2 Subject Systems
Table 3 lists the details of subject systems used in our

study. We selected these subject systems because these are
diverse in nature, differing in size , spanning 11 application
domains, and covering three programming languages. Also,
most of these systems differ from those included in the stud-
ies of Krinke[12] and Hotta et al.[6], which was intentionally
done to retrieve exact stability scenarios.

5. EXPERIMENTAL RESULTS
We implemented all three candidate methods in a common

framework in Java using MySQL for the backend database.
Instead of using any existing implementations, we have reim-
plemented all these methods as we wanted to have a common
framework for comparison. Values for the target metrics

Table 4: Decision Making Strategy

Method
Metrics Decision Making

CC NC CC More
Stable

NC More
Stable

Hotta et
al. [6]

MFd MFn MFd <MFn MFn <MFd

Krinke
[12]

ALCc,
PFc

ALCn,
PFn

ALCc is
older

ALCn is
older

Krinke’s
Variant

AAc AAn AAc >AAn AAn >AAc

Special Decision for Krinke’s Method
if ALCc = ALCn then
PFc >PFn implies CC more stable
PFn >PFc implies NC more stable

CC = Cloned Code NC = Non-cloned Code

Table 6: File level metrics for two systems
Subject System Clone Type PFc PFn

Plandora Type-2 6 4
Greenshot Type-3 43 12

Table 7: Modification Frequencies of Cloned (MFd)
and Non-cloned (MFn) code by Hotta et al.’s method

Type 1 Type 2 Type 3
Systems MFd MFn MFd MFn MFd MFn

J
a
v
a

DNSJava 21.61 7.12 19.34 6.99 7.93 8.66
Ant-Contrib 3.62 1.49 2.02 1.52 1.43 1.59
Carol 8.15 6.60 4.07 3.69 9.91 8.97
Plandora 0.44 0.92 0.45 0.97 0.55 1.11

C

Ctags 6.37 3.82 7.19 7.17 6.71 3.68
Tidyfornet 0 5.07 0 4.87 0 4.89
QMailAdmin 5.09 2.74 8.83 5.47 8.24 2.58
Hash Kill 61.24 115.22 59.92 115.64 65.75 118.04

C
#

GreenShot 7.94 6.07 6.92 6.07 8.13 6.06
ImgSeqScan 0 20.93 0 21.06 0 21.29
CapitalResource 0 67.15 0 67.31 3.63 67.11
MonoOSC 8.58 29.14 7.92 29.23 10.62 29.63

were obtained by applying each of the methods on each of
the subject systems considering three types of clones (Type-
1, Type-2 and Type-3). Table 5 shows the average last
change dates obtained by applying Krinke’s method. Table
7 and Table 8 contain respectively the modification frequen-
cies and average ages of cloned and non-cloned code. File
level metrics for two special cases (Table 4) are shown in
Table 6. Interpretation of the table data is explained below.

Almost all of the tables are self-explanatory. Decision
making strategies for Tables 5, 7 and 8 are elaborated in
Table 4. The stability decisions (as per Table 4) of all the
metric values contained in the Tables 5, 7 and 8 are summa-
rized in Table 9 which contains decisions for 108 (12 subject
systems x 3 methods x 3 clone types) decision points corre-
sponding to 108 cells containing decision symbols (‘⊕’ and
‘⊖’, explained in the table).

For decision making regarding Krinke’s method we prior-
itized the system level metrics (ALCc and ALCn) as they
represent the exact scenarios of the whole system. There are
only two examples of special cases as per Table 4: (i) Type-3
case of ‘Greenshot’ and (ii) Type-2 case of ‘Plandora’. For
these, the system level metrics (Table 5) are the same and
so, we took decisions from file level metrics. We have given
the file level metrics for these two cases in Table 6 without
giving for all 36 cases (12 subject systems x 3 clone types).

6. ANALYSIS OF EXPERIMENTAL RESULTS
We presented our analysis of the experimental results from

four perspectives by answering four research questions in-
troduced in Table 1. Table 10 containing 36 (12 subject
systems, 3 clone types) decision points was developed from
Table 9. Each cell of this table corresponds to a decision
point and implies the agreement (‘⊕’ or ‘⊖’) and disagree-
ment (‘⊗’) of the candidate methods in making stability
decisions for that point. Meanings of ‘⊕’, ‘⊖’ and ‘⊗’ are
given in the table. In Table 9, the decisions of the candi-
date methods for Type-1 clones of ‘Ctags’ are same (⊖).
For the Type-2 case, our proposed variant disagrees with

Table 8: Average Age in days of Cloned (AAc) and
Non-cloned (AAn) code by the proposed variant

Type 1 Type 2 Type 3
Systems AAc AAn AAc AAn AAc AAn

J
a
v
a

DNSJava 2181 2441 2247 2443 2210.9 2446.9
AntContrib 853.6 903.7 896.1 903.3 870.6 904.4
Carol 189.6 210.9 190.3 211.3 227 209.6
Plandora 51.82 51.32 50.6 51.4 51.5 51.32

C

Ctags 1301.4 1345.2 1351.9 1345 1564.8 1343.4
Tidyfornet 104.5 97.9 84.9 98.1 72.8 98.3
QMailAdmin 2664.2 2678.1 2651.7 2678.2 2644.6 2678.3
Hash Kill 261.5 118.5 250.3 118.4 257.9 118

C
#

GreenShot 103.1 97.1 102.9 97.1 94.5 97.2
ImgSeqScan 14 20 15.6 20.3 14.4 20.4
Capital
Resource

86.7 86.5 88 86.5 89.3 86.5

MonoOSC 315.4 313.5 347.9 313 378 312.3

Table 9: Comparative Stability Scenarios

Methods Krinke [12] Hotta et al.[6] Variant
Systems T1 T2 T3 T1 T2 T3 T1 T2 T3

J
a
v
a

DNSJava ⊖ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖ ⊖ ⊖

Ant-Contrib ⊖ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖ ⊖ ⊖

Carol ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊕

Plandora ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊖ ⊕

C

Ctags ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊕ ⊕

Tidyfornet ⊕ ⊖ ⊖ ⊕ ⊕ ⊕ ⊕ ⊖ ⊖

QMailAdmin ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Hash Kill ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

C
#

GreenShot ⊕ ⊕ ⊕ ⊖ ⊖ ⊖ ⊕ ⊕ ⊖

ImgSeqScan ⊖ ⊖ ⊖ ⊕ ⊕ ⊕ ⊖ ⊖ ⊖

CapitalResource⊖ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

MonoOSC ⊖ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕=Cloned Code More Stable

⊖=Non-Cloned Code More Stable
T1, T2 and T3 denote clone types 1, 2 and 3 respectively

Table 10: Overall stability decisions by methods

Lang. Java C C#

C
lo

n
e

T
y
p

e
s

D
N

S
J
av

a

A
n
t-

C
o
n
tr

ib

C
a
ro

l

P
la

n
d
o
ra

C
ta

g
s

T
id

y
fo

rN
et

Q
M

a
il

A
d
m

in

H
a
sh

K
il
l

G
re

en
S
h
o
t

Im
g
S
eq

S
ca

n

C
a
p
it

a
l

R
es

o
u
rc

e

M
o
n
o
O

S
C

Type-1 ⊖ ⊖ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊗ ⊗ ⊗ ⊗

Type-2 ⊖ ⊖ ⊖ ⊗ ⊗ ⊗ ⊖ ⊕ ⊗ ⊗ ⊕ ⊕

Type-3 ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊖ ⊕ ⊗ ⊗ ⊕ ⊕

⊕=All methods agree that cloned code is more stable

⊖=All methods agree that non-cloned code is more stable

⊗=Not all of the methods agreed

Table 5: Average Last Change Dates of Cloned (ALCc) and Non-cloned (ALCn) code

Clone Types Type 1 Type 2 Type 3
Systems ALCc ALCn ALCc ALCn ALCc ALCn

J
a
v
a

DNSJava 24-Mar-05 26-Apr-04 21-Jan-05 24-Apr-04 31-Mar-05 19-Apr-04
Ant-Contrib 22-Sep-06 03-Aug-06 18-Sep-06 02-Aug-06 08-Sep-06 03-Aug-06
Carol 25-Nov-07 18-Jan-07 25-Nov-07 14-Jan-07 12-Jun-05 27-Feb-07
Plandora 31-Jan-11 01-Feb-11 01-Feb-11 01-Feb-11 31-Jan-11 01-Feb-11

C

Ctags 27-May-07 31-Dec-06 24-Mar-07 31-Dec-06 17-Sep-06 01-Jan-07
Tidyfornet 10-Jan-07 16-Jan-07 29-Jan-07 16-Jan-07 10-Feb-07 16-Jan-07
QMail Admin 07-Nov-03 24-Oct-03 19-Nov-03 24-Oct-03 26-Nov-03 24-Oct-03
Hash Kill 14-Jul-10 02-Dec-10 27-Jul-10 02-Dec-10 19-Jul-10 02-Dec-10

C
#

GreenShot 11-Jun-10 21-Jun-10 12-Jun-10 21-Jun-10 20-Jun-10 20-Jun-10
ImgSeqScan 19-Jan-11 14-Jan-11 17-Jan-11 14-Jan-11 19-Jan-11 14-Jan-11
Capital Resource 13-Dec-08 12-Dec-08 11-Dec-08 12-Dec-08 10-Dec-08 12-Dec-08
MonoOSC 08-Apr-09 21-Mar-09 05-Mar-09 21-Mar-09 21-Jan-09 22-Mar-09

both Krinke’s and Hotta’s methods, and for Type-3 clones,
Hotta’s method disagrees with the remaining two. So, in
Table 10, Type-1 clones of ‘Ctags’ is marked with ‘⊖’ and
both Type-2 and Type-3 clones are marked with ‘⊗’.

6.1 Type centric analysis
In this analysis, we tried to answer the first research ques-

tion (Table 1) by investigating how a particular method’s
decisions on a particular subject system vary with the vari-
ation of clone types. We have the following observations.

The stability decisions made by a method on a specific
subject system corresponding to three clone types are sim-
ilar for 24 cases (Table 9, 66.67% cases among 36 cases.
Each case consists of three decisions for three clone types
made by a particular method on a particular subject sys-
tem) with some minor variations for the remaining cases.
As an example of variations, consider the decisions made by
Hotta’s method for ‘DNSJava’. For Type-3 case (Table 7),
MFd < MFn suggests that Type-3 clones are more stable
than the corresponding non-cloned code. However, accord-
ing to this method, Type-1 and Type-2 clones of ‘DNSJava’
are much less stable than non-cloned code (The difference
of MF s for the Type-3 case is smaller compared to the dif-
ferences for the other two cases).

By analyzing each clone type in Table 10 individually we
have discovered some stability statistics given in Table 11
which demonstrates the following trends with the increase
of clone type index from Type-1 to Type-3 -

(i) The percentage of subject systems where cloned code
is more stable than non-cloned code is increasing.

(ii) The percentage of subject systems where cloned code
is less stable than non-cloned code is decreasing rapidly.

(iii) For each clone type, a major amount of decision dis-
agreements is observable and also the proportion of disagree-
ments is increasing.

Findings of Analysis: Type-1 (exact clones) and Type-
2 (clones with differences in identifier names and data types)
clones are very harmful for a system because they cause the
system to be more unstable than the corresponding non-
cloned code. According to the agreed decisions points (Table
10) of Type-1 case -

(i) clones decrease the stability of a system with probabil-
ity = No. of cells with cloned code less stable/total no. of
cells = 5/12 = 0.42.

(ii) non-cloned code decreases the stability of a system
with probability = 3/12 = 0.25.

For Type-2 case, these two probabilities are 0.33 (for cloned
code) and 0.25 (for non-cloned code) respectively. So, for

Table 11: Stability w.r.t. different clone types

% of Subject Systems
Decision Parameters Type 1 Type 2 Type 3

Cloned code more stable 25 25 33.33
Non-cloned code more stable
(Cloned code less stable)

41.67 33.33 8.33

Conflicting 33.33 41.67 58.33

Table 12: Stability w.r.t. candidate methods

Decision Parameters % of Decision Points

Krinke
[12]

Hotta
et al.[6]

Proposed
variant

Non-cloned code more sta-
ble (cloned code less stable)

55.56 44.44 52.78

Cloned code more stable 44.44 55.56 47.22

both of these cases (Type-1 and Type-2) cloned code has
higher probability of decreasing the system’s stability. But,
the opposite is true for Type-3 case. Type-3 clones decrease
stability with probability 0.08 which is much less than the
probability of non-cloned code (0.33). Thus, both (i) exact
copy-paste activities and (ii) cloning by renaming identifiers
and changing data types should be given more attention
during development as well as maintenance phase.

6.2 Method centric analysis
We see that Table 9 contains 108 decision points where

each method contributes 36 decisions (corresponding to 12
systems and 3 clone types). From this we can retrieve the
decision making scenario presented in Table 12 exhibited
by the candidate methods. The table shows that Krinke’s
method and our variant exhibit similar statistics, but the
method proposed by Hotta et al. shows a larger variation
from the others. Overall, Hotta et al.’s approach suggests
that cloned code is more stable while the other two suggest
the opposite.

There is not only a disagreement in general, but also for
the individual systems, as can be seen in Table 10. The in-
teresting information that can be retrieved from this table is
that the candidate methods have disagreements for 44.44%
of the cases (16 cells of disagreements among 36 cells in Ta-
ble 10). Moreover, only for two systems (‘QMail Admin’
and ‘Hash Kill’) all three methods agree on their decisions.
There are some strong disagreements due to the major dif-
ferences in decision strategies mentioned in Section 3.4.

Analysis of Strong Disagreements: We consider ‘ImqSe-
qScan’ as an (extreme) example. For each clone type, the

method proposed by Hotta et al. shows strong disagree-
ment to the decision of Krinke’s method and our variant.
Each of the three types of clones was suggested to be more
stable than non-cloned code by the method proposed by
Hotta et al. (Table 7). However, both Krinke’s method
and our variant yield the opposite decisions (Table 5 and 8).
More interestingly, Hotta’s method reveals that the cloned
regions of ‘ImgSeqScan’ did not receive any change (modi-
fication frequencies of cloned code is 0, Table 7) during the
entire lifetime (consisting of 73 commit transactions) where
the other two methods show that the cloned code is signifi-
cantly younger. In this case the regions of cloned code have
only been created lately and have not been modified after
creation. The following explanation will clarify this.

Suppose a subject system receives 100 commit transac-
tions. Some clone fragments were created in some of these
commits but no existing clone fragment was modified at all.
In such a case, Hotta et al.’s method will see that there are
no modifications in the cloned region. As a result, MFd
will be zero. On the other hand, the blame command will
retrieve the creation dates of the clone fragments existing
in the last revision of the system and Krinke’s method will
determine the average last change date for the cloned region
considering these creation dates. If the creation dates of
some clone fragments are newer than the modification dates
of non-cloned fragments which forces the average last change
date of the cloned region to be newer than that of the non-
cloned region, Krinke’s method will suggest cloned code to
be less stable than non-cloned code. Thus, the cloned or
non-cloned region of a subject system might be represented
to be less stable than its counterpart even if it does not
undergo any modifications during the entire evolution time
while its counterpart does.

Finally, in answer to the second research question we can
say that the stability decisions made by the candidate meth-
ods are often not similar (44.44% dissimilarities) and Hotta
et al.’s method has strong disagreements with the other two
methods in many cases.

Findings of Analysis: Considering all candidate meth-
ods and metrics we see that, cloned code (all three types) has
higher probability to force a system into an unstable state
as compared to the probability of non-cloned code. Accord-
ing to Table 9, cloned code is less stable than non-cloned
code for 55 cells (among 108 cells). The opposite is true for
the remaining cells. So the probability by which cloned code
makes the system unstable is 55/108 = 0.51 which outweighs
the probability of non-cloned code (0.49). Though the dif-
ference between the probabilities is very small, it disagrees
with the conclusion drawn by both Krinke [12] and Hotta
et al.[6] about comparative stability. Thus, clones should be
carefully maintained and refactored (if possible).

6.3 Language centric analysis
Our set of subject systems consists of four systems from

each of the three languages (Java, C and C#). In Table
10, each language contributes 12 (4 subject systems, 3 clone
types) decision points. Considering these decision points
we have retrieved some language specific stability scenario
which are presented in Table 13.

It is interesting that none of the C# systems analyzed in
our study showed non-cloned code to be more stable than
cloned code and also these systems exhibit the highest rate
of decision dissimilarities compared to others. Java and C
systems show same proportions of decision disagreements.

Table 13: Stability w.r.t. programming languages

Decision Parameters % of Agreed Decision Points
Java C C#

Non cloned code more
stable (Cloned code less
stable)

50 33.33 0

Cloned code more stable 16.67 33.33 33.33
Conflicting decisions 33.33 33.33 66.67

Table 14: Fisher’s Exact Tests for prog. languages

Java C Java C# C C#

CCLS 50 33 50 0 33 0

NCLS 17 33 17 33 33 33

DD 33 33 33 67 33 67

P = 0.0141 P <0.0001 P <0.0001

CCLS = Cloned Code Less Stable
NCLS = Non-cloned Code Less Stable
DD = Decision Disagreements

Also, for most of the decision points regarding Java systems,
cloned code was less stable than non-cloned code.

Fisher’s Exact Test We performed Fisher’s exact tests
[4] on the three possible paired-combinations of the three
languages using the values in Table 13 to see whether there
are significant differences among the observed proportions of
different languages. We defined the following null hypoth-
esis. The values in Table 13 were rounded before using in
Fisher’s exact test.

Null Hypothesis: There is no significant difference between
the stability scenarios presented by different programming
languages.

From Table 14 we see that, P value for each paired com-
bination of programming languages is less than 0.05. This
rejects the null hypothesis and confirms that, there are sig-
nificant differences among the observed scenarios of different
programming languages.

Findings of Analysis: Clones in Java and C systems
exhibit higher instabilities (Table 13) as compared to those
of C# systems and so, developers as well as project man-
agers should be more careful during software developments
using these languages (Java and C).

6.4 System centric analysis
In the system centric analysis we have investigated whether

system sizes and system ages affect the comparative stabili-
ties by observing how modifications occur in the cloned and
non-cloned regions as the system becomes older. So, we
recorded and plotted the modification frequencies of four
subject systems for different revisions. Such type of plot-
ting was not possible for the other two methods because
these methods work only on the last revision of a subject
system. We have chosen ’DNSJava’, ’Carol’, ’MonoOSC’
and ’Hashkill’ in this investigation. ’DNSJava’ and ’Carol’
have large number of revisions as compared to the revision
numbers of other two systems. On the other hand ’Hashkill’
is much bigger than the remaining three systems in case of
LOC. So, selecting these system we have covered all sorts of
systems in terms of LOCs and revisions numbers covering
three languages. Also, these subject systems yielded contra-
dictory stability scenarios for Hotta et al.’s method.

For each of these systems, we plotted the modification fre-
quencies for each of the revisions beginning from the second

one for each clone type. For each revision r (r ≥ 2), the plot-
ted modification frequencies of cloned and non-cloned code
were calculated by considering all revisions from 1 to r. The
intention was to calculate the modification frequencies for r
(r ≥ 2) considering r as the current last revision.

In the graphs (not included in the paper due to space lim-
itation), resulted from frequency plotting, we observed no
consistent change pattern among the distributions of modi-
fication frequencies of the mentioned systems. So, question
4 can be answered by our observation that, system sizes and
system ages do not affect the stability of cloned and non-
cloned code in a consistent or correlated way.

It is worth noting that every system can have a differ-
ent development strategy which can affect changes to cloned
and non-cloned code. For example, programmers might be
afraid of changing cloned code because of the risk of incon-
sistent changes and would try to restrict the changes to the
non-cloned code. Another possibility is that developers are
advised not to change any code of other authors, thus are
forced to create a clone in order to apply a change. However,
such development strategies cannot be identified by looking
at the change history alone and thus it is not possible to
measure their impact on cloned and non-cloned code.

7. THREATS TO VALIDITY
In the experimental setup section we mentioned the clone

granularity level (block clones), difference thresholds and
identifier renaming options that we have used for detecting
three clone types. Different setups in corresponding clone
types might result in different stability scenarios.

For some large subject systems the total numbers of re-
visions in the SVN repository was less than 500. This hap-
pened because these subject systems were placed under SVN
control after significant amount of code was developed. This
might have some effects on the code stability scenarios.

8. CONCLUSION
In this paper we presented an in depth investigation on the

comparative stabilities of cloned and non-cloned code. We
have shown a four dimensional analysis of our experimental
results by answering four research questions.The ultimate
aim of our investigation is to find out the changeabilities ex-
hibited by different clone types and languages and whether
there is any yet-undiscovered consistency in code modifica-
tion biasing the stability scenarios. Our system centric anal-
ysis suggests that there is no existing biases in code modi-
fications as well as code stabilities and system development
strategy can play an important role in driving comparative
stability scenarios. Our type centric analysis reveals that,
Type-1 (Exact clones) and Type-2 (clones with differences in
identifier names and data types) clones are very harmful for
a system’s stability. They exhibit higher probabilities of in-
stabilities than the corresponding non-cloned code. So, these
clone types should be given more attention both from devel-
opment and management perspectives. Our method centric
analysis discovers the causes of strong and weak disagree-
ments of the candidate methodologies in taking decisions
stating that the methods disagree in 44.44% of the cases. In
this analysis we evaluated 108 decision points of compara-
tive stabilities and found that, cloned code exhibits higher
changeability than that of non-cloned code which opposes
the already established bias ([12, 6]) about comparative sta-
bilities of cloned vs. non-cloned code. Our language centric

analysis discovers that, clones of Java and C systems show

higher modification probabilities as compared to those of
C# systems. This argument is also supported by statistical
proof using Fisher’s exact test (2 tailed). Our future plan is
to perform an exhaustive empirical study for further anal-
ysis of the impacts of clones using several clone detection
tools, methods and a wider range of subject systems.

Acknowledgments: This work is supported in part by
the Natural Science and Engineering Research Council of
Canada (NSERC).

9. REFERENCES
[1] L. Aversano, L. Cerulo, and M. D. Penta. How clones

are maintained: An empirical study. In Proc. CSMR,
pp. 81-90, 2007.

[2] CCFinderX.
http://www.ccfinder.net/ccfinderxos.html

[3] J .R. Cordy and C.K. Roy. The NiCad Clone Detector.
In Proc. ICPC (Tool Demo), pp. 219-220, 2011.

[4] Fisher’s Exact Test. http://in-silico.net/
statistics/fisher_exact_test/2x3

[5] N. Göde, J. Harder. Clone Stability. In Proc. CSMR,
pp. 65-74, 2011.

[6] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto. Is
Duplicate Code More Frequently Modified than
Non-duplicate Code in Software Evolution?: An
Empirical Study on Open Source Software. In Proc.
EVOL/IWPSE, pp. 73-82, 2010.

[7] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner.
Do Code Clones Matter? In Proc. ICSE, pp. 485-495,
2009.

[8] C. Kapser and M. W. Godfrey. “Cloning considered
harmful” considered harmful: patterns of cloning in
software. Emp. Soft. Eng. 13(6), pp. 645-692, 2008.

[9] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy.
An empirical study of code clone genealogies. In Proc.
ESEC-FSE, pp. 187-196, 2005.

[10] J. Krinke. A study of consistent and inconsistent
changes to code clones. In Proc. WCRE, pp. 170-178,
2007.

[11] J. Krinke. Is cloned code more stable than non-cloned
code? In Proc. SCAM, pp. 57-66, 2008.

[12] J. Krinke. Is Cloned Code older than Non-Cloned
Code? In Proc. IWSC, pp.28-33, 2011.

[13] A. Lozano, M. Wermelinger, and B. Nuseibeh.
Evaluating the Harmfulness of Cloning: A Change
Based Experiment. In Proc. MSR, pp. 18-21, 2007.

[14] A. Lozano and M. Wermelinger. Tracking clones’
imprint. In Proc. IWSC, pp. 65-72, 2010.

[15] A. Lozano, and M. Wermelinger. Assessing the effect
of clones on changeability. In Proc. ICSM, pp.
227-236, 2008.

[16] C. K. Roy and J. R. Cordy. A mutation /
injection-based automatic framework for evaluating
code clone detection tools. In Proc. Mutation, pp.
157-166, 2009.

[17] C. K. Roy and J. R. Cordy. NICAD: Accurate
Detection of Near-Miss Intentional Clones Using
Flexible Pretty-Printing and Code Normalization. In
Proc ICPC, pp. 172-181, 2008.

[18] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K.
Roy, and K. A. Schneider. Evaluating code clone
genealogies at release level: An empirical study. In
Proc. SCAM, pp. 87-96, 2010.

[19] S. Thummalapenta, L. Cerulo, L. Aversano, and
M. D. Penta. An empirical study on the maintenance
of source code clones. In ESE, 15(1), pp. 1-34, 2009.

