
On the Relationships between Domain-Based
Coupling and Code Clones: An Exploratory Study

Md Saidur Rahman∗, Amir Aryani†, Chanchal K. Roy∗, Fabrizio Perin‡
∗University of Saskatchewan, Canada
{saeed.cs, chanchal.roy}@usask.ca

†Australian National University, Australia
amir.aryani@anu.edu.au

‡University of Bern, Switzerland
perin@iam.unibe.ch

Abstract—Knowledge of similar code fragments, also known
as code clones, is important to many software maintenance
activities including bug fixing, refactoring, impact analysis and
program comprehension. While a great deal of research has
been conducted for finding techniques and implementing tools to
identify code clones, little research has been done to analyze the
relationships between code clones and other aspects of software.
In this paper, we attempt to uncover the relationships between
code clones and coupling among domain-level components. We
report on a case study of a large-scale open source enterprise
system, where we demonstrate that the probability of finding
code clones among components with domain-based coupling is
more than 90%. While such a probabilistic view does not replace
a clone detection tool per se, it certainly has the potential to
complement the existing tools by providing the probability of
having code clones between software components. For example,
it can both reduce the clone search space and provide a flexible
and language independent way of focusing only on a specific part
of the system. It can also provide a higher level of abstraction to
look at the cloning relationships among software components.

I. INTRODUCTION

Code clones constitute a significant fraction of code (7%
to 23% [11]) and it is important to be aware of clones
from several maintenance perspectives. One of the important
maintenance concerns is the propagation of existing bugs
and introduction of new bugs due to inconsistent updates
to duplicate code blocks [5], [6]. Given the importance,
many tools and techniques for detecting clones have been
proposed [11]. However, cross-language and source code
independent clone analysis are still open research challenges.
Although complete solutions to these open problems are yet
to come, artifacts and information beyond the source code
are potentially useful to formulate complementary solutions
for identifying dependencies and change propagation between
software components [2].

In contrast to a great deal of research about code clones,
there is little information available about the relationships
between clones and other aspects of software systems such
as the domain level artifacts. Recently, relationships among
software components at domain level, termed as domain-based
coupling [3], have been shown useful in tracing dependencies
at the source code and database levels. In this paper, we focus
on the domain-based coupling and its relationships with code

clones. We hypothesize that coupling at the domain level can
approximate clones in the source code.

We evaluate our hypothesis with a case study on a large scale
enterprise system called ADEMPIERE. We derive domain-based
coupling from the domain information available at the user
interface level. Code clones, on the other hand, are detected
using the clone detection tool. The relationships between
domain-based coupling and code clones are then determined
based on the extent of co-existence of both relationships
between all pairs of software components. Our results from
the case study show that the coupling between domain level
components can approximate clones in the associated code
with high precision without even accessing the source code.
In particular, we focus on the following research questions in
conducting the exploratory study.

RQ1 What is the probability of finding code clones where
there is a domain-based coupling?

RQ2 How efficiently can domain-based coupling assist
software maintainers in discovering code clones?

While such a probabilistic approach of predicting the
existence of clones does not replace the traditional clone
detection tools, it certainly has the potential to complement
the existing state of the art tools by providing the probability
of having clones among software components. Moreover, the
approach is independent of program source code. Consequently,
it can be used for the analysis of hybrid systems developed
with multiple programming languages and legacy systems with
missing or obsolete source code. In addition, based on the
domain-based coupling, it provides a flexible way of focusing
only on the relevant parts of the systems and thus reduces the
clone search space. Once the relevant parts are identified, one
can either use the existing tools for actual clone detection or
opt for manual analysis where feasible. This essentially helps
predicting goal-driven clones without being overwhelmed with
hundreds of other irrelevant clones.

The rest of this paper is organized as follows: Section II
describes the domain-based coupling analysis. Section III
discusses the code clones analysis. Section IV presents the
evaluation results. Section V discusses the potential threats to
the validity of our results, Section VI describes the related

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1265

works, and finally Section VII concludes this paper with a
discussion on the outcomes and future areas of investigation.

II. DOMAIN-BASED COUPLING

In this section, we describe the methodology for domain-
based coupling analysis, and how it is implemented for
ADEMPIERE, the system under analysis.

A. Notation and Definitions

Our domain analysis model is derived from the models
proposed by Aryani et al. [3], [1], [2]. The three key elements
at the domain level are modelled as follows:
• A domain variable is a variable unit of data that has a

clear identity at the domain level. Domain variables are
modelled by a finite set V , called variable symbols.

• A domain function represents a domain-level behaviour of
the system associated with at least one domain variable
as an input or output. Domain functions are modelled
by a finite set F , called function symbols, and the
binary relation USE ⊆ F × V represents the relation
between functions and variables as the input-output of
the functions.

• A user interface component (UIC) is a system component
which directly interacts with users, and contains one or
more domain functions. UICs are modelled by a finite
set C, called the component symbols, and HAS ⊆ C×F
represents the relation between components and functions.

Definition 1. The conceptual connection relation CNC ⊆
C × C is defined by

CNC = HAS .USE .USE−1HAS−1

The domain-based coupling is derived based on the following
measurements:
Definition 2. The number of common variables among two
UICs is modelled by the function ϑ : C × C → N where

ϑ(c, c′) = |c.HAS .USE ∩ c′.HAS .USE |
Note that the definition of common domain variables is
symmetric, i.e., ϑ(c, c′) = ϑ(c′, c).
Definition 3. The domain-based coupling graph of a system
is a symmetric weighted graph, G = (C,CNC\ID, ω) where
ID indicates the identity relation and ω indicates the coupling
weight function ω : C × C → [0..1] by

ω(c, c′) =
ϑ(c, c′)

|c.HAS .USE ∪ c′.HAS .USE |
In the scope of this paper, by domain-based coupling we refer
to ω. The next example demonstrates how to measure ϑ and
ω for two example UICs.
B. Example

In ADEMPIERE, Daily Balances (c1) and Accounting (c2) are
two UICs each with one domain function Query Daily Account
Balances and Query Accounting Transactions respectively.
Daily Balances (c1) contains 22 domain variables while
Accounting (c2) has all Daily Balances’ domain variables and
11 others. Thus, there are total 33 domain variables used by
either of these UICs; therefore,
ϑ(c1, c2) = 22 and ω(c1, c2) = 22/33 = 0.67

C. Domain Analysis in ADempiere
In this study, we consider a tab as an user interface

component. The (HAS.USE) relationships between UICs
and domain variables can be derived from manual analysis
of the working software, user manuals, or system functional
specification [2]. In the case of ADEMPIERE, this information
is stored in a part of the database called application dictionary.
We harvested this information using a SQL script resulting
in 889 UICs and 2,359 domain variables, leading to 49,854
pairwise domain-based couplings relations.

III. CODE CLONE ANALYSIS

For our study on ADEMPIERE we used the NiCad [9] tool
for clone detection as NiCad is reported to have high precision
and recall [8], [10]. We detected clones with a minimum size
of 5 lines of code (LOC) for function granularity. At function
granularity each function in the source code is considered as a
unit of code for comparison and detection of clones.

To determine the number of the clone class (set of all
fragments that are clones of each other) and clone fragments
associated with each pair of UICs, all the clone classes are
checked. We count only those clone classes which have at least
one clone fragment from each of the source files behind the
selected UIC pair. For each of these clone classes, all clone
fragments originated from the source files behind the selected
pair of UICs are counted. Definition 4 formally defines this
procedure.

Definition 4. Let c, c′ ∈ C be any pair of user interface
components with their associated source code files S and
S′. The number of cloned code fragments ξ : C × C → N
associated with c, c′, is defined by
ξ(c, c′) =

∑
i | {f : (f ∈ FS ∨ f ∈ FS′)∧ f ∈ CCi ∧ (CCi ∩

FS) 6= φ ∧ (CCi ∩ FS′) 6= φ} |.
where FS and FS′ are the sets of all code fragments in S and
S′ respectively for a defined granularity, and CC is the set of
clone classes in the system.

We observed that out of 889 UICs in ADEMPIERE there are
813 UICs with their associated source code, and the other 76
UICs are created at runtime based on predefined business rules.
We consider exact clones for these 813 UICs with source code
for the evaluation of our study.

IV. EVALUATION

In this section, we provide empirical evidence on the
relationships between code clones and domain-based coupling,
and demonstrate how these relationships can be used to
assist software maintainers by answering the defined research
questions.
A. RQ1: Probability of Finding Clones

For our analysis, we use Fruchterman and Reingold’s [4]
force-based graph layout (known as spring layout) to visualize
the domain-based coupling graph (Fig. 1a). Now, let us consider
E ⊆ C × C to be the set of domain-based coupling relations
including all combinations of pairs between UICs. Our query is
Q = {(c, c′)|c, c′ ∈ C,ω(c, c′) > 0}, the set of the couplings
connecting UICs by coupling weight ω, and A = {(c, c′)|c, c′ ∈

1266

C, ξ(c, c′) > 0} is the expected answer, the set of UIC pairs
with one or more clones in their code behind.

There are 813 UICs in our analysis with source code
(Section III), leading to |E| =330,078 disjoint UIC pairs out
of which |A| =68,563 UIC pairs have clones in their code
behind it. Again, the domain-based coupling relation contains
|Q| =44,163 couplings, representing UIC pairs with ω > 0,
from which |Q ∩A| =39,850 have exact clones in their code
behind. The probabilities of finding code clones between UIC
pairs with and without domain-based coupling represented by
PQ and PQ̄ respectively and measured as

PQ =
|Q ∩A|
|Q|

= 90.23% PQ̄ =
|A ∩ E\Q|
|E\Q|

= 10.04%

The higher value of probability PQ, also can be considered
as precision, implies that domain-based coupling can be used
to provide a precise prediction of the places in the source code
that have cloned code (or vice versa). In addition, the high
probability of co-existence of domain-based coupling and code
clones suggests that domain-based coupling can be used to
single out a subset of codebase having code clones with a
selected component for a goal-driven clone analysis.

Summary: The probability of finding code clones where
there is domain-based coupling is more than 90%.

B. RQ2: Discovering Code Clones

Clone detection in the source code is often computationally
expensive and it may generate an exhaustive list of clones.
To carry out maintenance, software maintainers need precise
and concise suggestions about the locations of code clones, as
inconsistent updates to clone fragments may introduce bugs
in the system. Instead of reviewing an exhaustive list of all
clones in the system, it is more useful to have a short list of
higher abstraction level components that most likely contain
code clones. The maintainers can then confidently look at those
selected components for their intended task. Using domain-
based coupling we can provide such a short list based on
the top most coupled UICs, and which might in turn help in
prioritizing the components to work on.

For a given UIC, c ∈ C, we derive the short list of Qc,n ⊆ C
which contains the top n UICs with highest domain-based
coupling to c. To evaluate how useful such a short list is, we
measure the likelihood of finding one or more clone fragments
in the code behind of UICs in the short list. More formally, if
Ac,k ⊆ C represents the set of UICs with at least k number of
clone fragments to c, then the likelihood measure is defined as

Ln,k =
|{c|c ∈ C,Qc,n ∩Ac,k 6= ∅}|
|{c|c ∈ C,Qc,n 6= ∅}|

Table I shows the results for the likelihood of finding code
clones in the short lists of UICs that include top 3, 5 and 10
highly coupled UICs. The likelihood of finding 10 code clones
or more in the top 3 UICs is 3.94%. The likelihood increases
by reducing the threshold for code clones, up to 88% for k =1.
In addition, by increasing the size of the short list one can
find more code clones. This is more notable for the higher

(a) Domain-based coupling graph

(b) Filtered graph by code clones

Legend: Nodes are the UICs of ADEMPIERE in both graphs. Top: Edges
represent domain-based coupling between UICs with ω > 0.1. Bottom: Edges
show that there are both code clones and domain-based coupling.

Fig. 1: Domain-based coupling vs clones

thresholds. For the threshold of k =10, increasing the short list
size from three to ten, almost doubles the chance of finding
code clones, while for the threshold k =1, increasing the size
of the list improves the likelihood from 88.81% to 91.64%.
This is a trade off between accuracy and cost, since it is less
expensive and more convenient for software maintainers to
review a list of three UICs compared to a list of ten.

TABLE I: LIKELIHOOD (%) OF FINDING CLONES IN TOP n RESULTS

k 1 3 5 10
Top 3 88.81 38.75 17.47 3.94
Top 5 90.53 44.77 21.40 5.78
Top 10 91.64 54.40 24.97 7.75

Legend: k is the threshold for minimum number of clones.

Summary: The likelihood of finding code clones in the
efficient short list of top three results is more than 88%.

1267

C. Visual Comparison

To visualize the relationships between domain based coupling
and code clones the comparison graphs (Fig. 1b) are created
by the following steps: First, the domain-based coupling graph
is generated (Fig. 1a) with a given threshold of ω > 0.1. The
value of the threshold is derived by a heuristic approach based
on the distribution of UIC pairs in the graph to filter out weak
couplings. Second, all the edges with no code clones, ξ =0 are
filtered out from the graph. The result is presented in Fig. 1b.
The remaining edges show the UIC pairs with both strong
domain-based coupling and code clones.

The comparison between these graphs in Fig. 1 shows that
from four clusters in the domain-based coupling graph, three
of them have high number of clones (tagged with A), and there
is one cluster with no clones (tagged with B). The qualitative
analysis of this cluster shows that it is composed of 76 UICs
which implement the multilingual aspect of ADEMPIERE.
These UICs are generated at runtime based on the predefined
business rules and there is no code behind these UICs.

V. THREATS TO VALIDITY

The code clone patterns and behaviour might be influenced
by the inherent features of a particular programming language.
Similarly, the distribution and patterns of clones may vary from
system to system. We aimed to address these issues by selecting
a case study system which typifies a majority of enterprise
systems. However, further studies are required with diversified
experimental settings to draw a generalized conclusions. In this
study, the quality of derived domain variables is dependent on
authors’ knowledge about the system. We addressed this issue
by cross checking the derived domain variables with the help
descriptions of the system.

VI. RELATED WORK

Studies show that domain knowledge is useful in understand-
ing the functionality of the code [7]. Domain knowledge has
been incorporated into reverse engineering and software main-
tenance by a number of researchers. Rugaber [12] showed how
domain knowledge can be useful in program comprehension.
Given the potentials of domain information, Aryani et al. [1],
[3] recently showed how domain information can be used to
identify dependencies among software components to support
change propagation.

Clone detection, on the other hand, is not a new topic and
there have been a great many tools and techniques available in
the literature [11]. Some of these clone detection techniques
are measuring textual similarity, finding common subsequences
of tokens, finding the similar sub-trees in Abstract Syntax
Tree (AST), comparing matrix values computed for source
code blocks and finding isomorphic sub-graphs [11]. Although
there are wide variety of clone detection tools and techniques,
these tools lack in generalized application to detect clones
from hybrid systems with source code of different languages.
This exploratory study examines one potential application of
domain information to predict clones in the program source
code without even accessing the source code.

VII. CONCLUSION AND FUTURE WORK

In this paper, we examined the relationships between domain
based coupling and code clones and investigated how this
relationship can support software maintenance. Unlike the
traditional clone detection approach it evaluates the feasibility
of using domain-based coupling to complement the existing
clone detection tools by providing the probability of the
existence of code clones between software components. The
results based on one of the largest open source enterprise
systems, ADEMPIERE, demonstrate that code clones could
be predicted using solely domain information with more than
90% precision. In addition, we presented how domain-based
coupling can be used to give efficient and precise suggestions
about code clones to software maintainers. The likelihood of
finding clones in such suggestions is more than 88%.

In future, we plan to extend our approach by using alternative
sources of domain information and other types of clones. In this
work, we used visible data fields to derive the domain-based
coupling between user interface components. However, this
approach can be extended to other data sources such as user
manuals, software built-in help descriptions, and requirement
documents. In addition, we used only one coupling metric based
on the number of common domain variables among software
components. In future, we plan to improve this approach by
using hybrid metrics by combining domain-based and other
coupling metrics.

REFERENCES

[1] A. Aryani, I. D. Peake, and M. Hamilton. Domain-based change
propagation analysis: An enterprise system case study. In Proc. ICSM,
pages 1–9, 2010.

[2] A. Aryani, I. D. Peake, M. Hamilton, H. Schmidt, and M. Winikoff.
Change propagation analysis using domain information. In Proc. ASWEC,
pages 34–43, Australia, 2009.

[3] A. Aryani, F. Perin, M. Lungu, A. N. Mahmood, and O. Nierstrasz. Can
we predict dependencies using domain information? In Proc. WCRE,
pages 55–64, 2011.

[4] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software: Practice and Experience, 21(11):1129–
1164, 1991.

[5] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code
clones matter? In Proc. ICSE, pages 485–495, 2009.

[6] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and K. A.
Schneider. Comparative stability of cloned and non-cloned code: An
empirical study. In Proc. ACM SAC, pages 1227–1234, 2012.

[7] M. Petrenko, V. Rajlich, and R. Vanciu. Partial domain comprehension
in software evolution and maintenance. In Proc. ICPC, pages 13 –22,
2008.

[8] C. Roy and J. Cordy. A mutation/injection-based automatic framework
for evaluating code clone detection tools. In Proc. ICSTW, pages 157
–166, 2009.

[9] C. K. Roy and J. Cordy. NiCad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization.
In Proc. ICPC, pages 172 –181, 2008.

[10] C. K. Roy and J. R. Cordy. Near-miss function clones in open source
software: An empirical study. Journal of Soft. Maintenance, 22(3):165–
189, 2010.

[11] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach.
Science of Comp. Prog., 74:470–495, 2009.

[12] S. Rugaber. The use of domain knowledge in program understanding.
Annals of Soft. Engg., 9:143–192, 2000.

1268

