
An Empirical Study of the Impacts of Clones in Software Maintenance
Manishankar Mondal Md. Saidur Rahman Ripon K. Saha

Chanchal K. Roy Jens Krinke* Kevin A. Schneider
University of Saskatchewan, Canada

{mshankar.mondal, saeed.cs, ripon.saha, chanchal.roy, kevin.schneider}@usask.ca

*University College London, UK
j.krinke@ucl.ac.uk

Abstract—The impacts of clones on software maintenance is
a long-lived debate on whether clones are beneficial or not.
Some researchers argue that clones lead to additional changes
during the maintenance phase and thus increase the overall
maintenance effort. Moreover, they note that inconsistent
changes to clones may introduce faults during evolution. On
the other hand, other researchers argue that cloned code
exhibits more stability than non-cloned code. Studies resulting
in such contradictory outcomes may be a consequence of using
different methodologies, using different clone detection tools,
defining different impact assessment metrics, and evaluating
different subject systems. In order to understand the conflicting
results from the studies, we plan to conduct a comprehensive
empirical study using a common framework incorporating nine
existing methods that yielded mostly contradictory findings.
Our research strategy involves implementing each of these
methods using four clone detection tools and evaluating the
methods on more than fifteen subject systems of different
languages and of a diverse nature. We believe that our study
will help eliminate tool and study biases to resolve conflicts
regarding the impacts of clones on software maintenance.

Keywords-–Clone Evolution; Code Stability; Experiment.

I. INTRODUCTION

Reuse of code fragments with or without modification by
copying and pasting from one location to another is very
common during software development. This results in the
existence of the same or similar code blocks in different
components of the software system. Code fragments that are
exactly the same or are very similar to each other are known
as clones. In addition to copy-paste activity, some other
issues, including programmers’ behaviour such as laziness
and the tendency to repeat common solutions, technology
limitations, code evolvability, code understandability and
external business forces have influences on code cloning [5].
Whatever the causes of cloned code, the impacts of clones
are of concern from a software maintenance point of view.

The question “Is Cloned Code Harmful?” has divided
software engineering researchers into two main groups. One
group, in favour of clones, concluded that clones are not
harmful [6], [7], [15], [1], [2], instead clones can be helpful
from different perspectives [5]. The second group identified
clones as true “bad smells” and showed that clones have
negative impacts on software quality and maintenance as
cloning increases maintenance cost [12], [3], [11]. Moreover,
clones can introduce faults during software maintenance and
evolution if the cloned code is updated inconsistently [3].

If we observe from an analytical perspective, we can
identify the possible candidate reasons behind these contra-
dictory outcomes. First, different researchers have modelled
and developed different impact evaluation systems using
different clone detection tools. Second, they have evaluated
their methods on different subject systems (code bases).
Third, the impact evaluation metrics calculated in those
systems were selected using different viewpoints.

In this paper we propose a uniform framework to evaluate
the impacts of clones on software maintenance. To elimi-
nate the existing contradictions among different studies, we
propose an empirical study that incorporates nine leading
existing methodologies [6], [7], [12], [15], [8], [2], [11],
[9], [18] that analyzed the impacts of clones. Our research
strategy involves the implementation of each of these meth-
ods using four clone detection tools including the hybrid
clone detection tool, NiCad [13] and the evaluation of these
methods on more than fifteen subject systems of diverse
size, language and application domain. We expect that the
integration of different methodologies within a common
framework will eliminate the unintentional biases and our
study will resolve the conflicts regarding the impact of
clones in software maintenance.

The rest of the paper is organized as follows. Section II
summarizes relevant research and outlines the background
and context of the proposed research. Section III describes
the proposed methodology in detail. The implementation
of the proposed system is outlined in Section IV. Section
V presents the decision making strategy and Section VI
describes the experimental result of this research followed
by the conclusion in Section VII.

II. RELATED WORK

Recently, Hotta et al. [2] studied the impact of clones
in software maintenance activities with a different approach
where the modification frequencies of the duplicated and
non-duplicated code segments were measured. Their imple-
mented system works on different revisions of a subject
system by automatically extracting the modified files across
consecutive revisions. They conducted a fairly large study
using different tools and subject systems which suggests that
the presence of clones does not introduce extra difficulties
to the maintenance phase.

Krinke [7] measured how consistently code clones are
changed during maintenance using Simian [17] (a clone



detector) and diff (a file comparison utility) on Java, C and
C++ code bases considering Type-I clones only. He found
that clone groups changed consistently through half their
lifetime. In another experiment he showed that cloned code
is more stable than non-cloned code [8]. In his most recent
investigation [9] centred on calculating the average ages of
the cloned and non-cloned code, he has proved cloned code
to be more stable than non-cloned code by exploiting the
capabilities of a version controlling system.

Lozano and Wermelinger [12] experimented to assess the
effects of clones on the changeability of software using
CCFinder [4] as the clone detector. They have calculated
three changeability measures: (i) likelihood; (ii) impact of
a method change; and, (iii) work required for maintaining
a method. According to their study, in at least 50% of the
cases clones did not increase the changeability measures but
sometimes these measures seemed to increase for the part
of the systems related to the cloned methods. In another
experiment [10], they experienced that cloned code leads to
more changes. In their most recent experiment [11] aiming
to analyze the imprints of clones over time, they calculated
the extension of cloning, and measured the persistence and
stability of cloned methods by improving their previous
studies. Their study suggests that cloned methods remain
cloned most of their lifetime and that cloning introduces a
higher density of modification during maintenance.

Kim et al. [6] proposed a model of clone genealogy to
study clone evolution. Their study with the revisions of
two medium sized Java systems showed that refactoring
of clones may not always improve software quality. They
also argued that aggressive and immediate refactoring of
short-lived clones is not required and that such clones might
not be harmful. Saha et al. [15] extended their work by
extracting and evaluating code clone genealogies at the
release level of 17 open source systems involving four
different languages. Their study reports similar findings to
Kim et al. and concludes that most of the clones do not
require any refactoring efforts in the maintenance phase.
On the other hand, Juergens et al.’s [3] study with large
scale commercial systems suggests that inconsistent changes
are very frequent in cloned code and nearly every second
unintentional inconsistent change to a clone leads to a fault.

Kapser and Godfrey [5] identified different patterns of
cloning and experienced that around 71% of the clones could
be considered to have a positive impact on the maintainabil-
ity of the software system.

Aversano et al. [1] combined clone detection and mod-
ification transactions on open source software repositories
to investigate how clones are maintained during evolution
and bug fixing. Their study reports that most of the cloned
code is consistently maintained. In another similar but ex-
tended study, Thummalapenta et al. [18] indicated that in
most of the cases clones are changed consistently and for
the remaining inconsistently changed cases, clones mainly

Figure 1. The proposed decision making procedure
undergo independent evolution.

We see that while the objective is the same, determining
the impacts of clones on software maintenance, researchers
considered different approaches with different clone detec-
tion tools and different subject systems, which may be
the reason there are contradictory findings. It would be
interesting to see if these contradictions can be resolved.

III. PROPOSED METHODOLOGY

From the implementation point of view, differences
among previously developed systems occurred in four di-
mensions. These are (a) underlying methodologies, (b) clone
detection tools, (c) metrics, and (d) subject systems.

The metrics used by the methods are different but the
intention is to assess the impact of clones on maintenance
activities. In our empirical study, we plan to implement nine
existing leading methods using four clone detection tools
following the decision making architecture in Fig. 1.

The differences in the dimensions (b) and (d) will be
eliminated by using the same clone detection tools for each
of the systems and applying the same subject systems (code
bases) to them.

According to the architecture, our implementation strategy
consists of fours steps: 1) selection of methodologies to im-
plement,; 2) selection of clone detection tools to implement
the methodologies; 3) selection of metrics to calculate; and,
4) selection of subject systems to evaluate the implemented
methodologies.

A. Methodology Selection

We plan to incorporate almost all of the existing but
leading studies that reported contradictory findings. Table
I represents the nine methods that we have selected for
our study. Among these, two methods proposed by Lozano
and Wermelinger [12], [11] assessed cloning as harmful for
maintenance while the remaining methods concluded the
opposite.

B. Tool Selection

In order to avoid further bias of clone detection tools, we
plan to use four clone detection tools including the hybrid
clone detection tool NiCad [13] that has been shown to give



Table I
LIST OF METHODS TO INCORPORATE IN OUR FRAMEWORK

Incorporated
Methods

Supported
Language

Tools Used Clone
Gran.

Clone
Types

Krinke [7] Java, C++, C Simian, diff AB 1
Lozano and Wer-
melinger [12]

Java CCFinder,
CTAGS

M 1

Lozano and Wer-
melinger [11]

Java CCFinder M 1, 2

Hotta et al. [2] Java, C++, C CCFinder(X),
Simian, Scorpio

AB 1, 2, 3

Kim et al. [6] Java CCFinder, diff AB 1
Saha et al. [15] Java, C++, C#,

C
CCFinder AB 1, 2

Krinke [9] Java Simian AB 1
Thummalapenta
et al. [18]

Java, C CCFinder,
SimScan, ccdiml.

AB 1, 2, 3

Krinke[8] Java, C++, C Simian, diff AB 1
AB: Arbitrary Block, M: Method

Table II
LIST OF SUBJECT CLONE DETECTION TOOLS

Subject Tools Detection
Approach

Supported Language Clone
Types

CCFinderX [4] Token Java, C++, C, Cobol, C# etc. 1, 2
NiCad [13] Text/Parser Java, C, C#, Python 1, 2, 3
Simian [17] Text Java, C++, C, C# etc. 1
Scorpio [16] PDG Java 1, 2, 3

both high precision and recall [14]. The subject tools that
we plan to use are listed in Table II.

C. Selection of Metrics

We plan to consider all the major metrics of the nine
studies listed in Table III. We believe that this comprehensive
set of metrics with four state-of-the-art clone detection tools
and more than 15 subject systems will provide us with
fairly unbiased results on the impacts of clones on software
maintenance and at the same time will help us find important
insights on the evolution of clones and their management.

D. Subject Code Bases / Input Selection

In order to avoid the sampling bias (at least partially) we
plan to use more than 15 subject systems of diverse varieties
and different languages for each of the nine methods (and
their metrics) selected. Our selection strategy will include
some of the previously studied systems along with several
new systems that have not been studied previously. We will
work on many revisions (and releases where applicable) of
these code bases tracked by SVN.

IV. IMPLEMENTATION OUTLINE

Implementation of the selected methods using the selected
tools and decision making by applying the methods to the
selected subject systems will be done in the following steps.

A. Step 1: Collecting the repositories

We use SVN to collect the subject systems from open
source software repositories.

Table III
LIST OF METRICS TO BE EVALUATED

Methods
proposed by

Selected Metrics to be Considered

Krinke [7] (i) Proportion of consistently changed clone groups
and (ii) Proportion of inconsistently changed clone
groups

Lozano and Wer-
melinger [12]

Likelihood and impact for changing a method and
work required for corresponding method change.

Lozano and Wer-
melinger [11]

Extension (Proportion of tokens in cloned region
of a method), persistence (percentage of cloned life
time of a method) and stability per method and per
application.

Hotta et al. [2] Modification frequencies of cloned and non-cloned
code for a range of revisions of a specific subject
system.

Kim et al. [6] (i) Number of genealogies changed consistently, (ii)
Number of locally unfactorable genealogies, (iii)
Proportion of long lived genealogies and (iv) Pro-
portion of k-volatile genealogies.

Saha et al. [15] (i) Proportion of consistently changed genealogies,
(ii) Proportion of syntactically similar genealogies
and (iii) Proportion of alive and dead genealogies.

Krinke [9] (i) Average last change date of cloned code in a file
(ii) Average last change date of non-cloned code in
a file and (iii) Proportion of files where cloned code
is older than non-cloned code.

Thummalapenta
et al. [18]

Normalized Levenshtein Distances (NLD) for clone
section pairs will be calculated to investigate the
clone evolution pattern.

Krinke [8] Stability of cloned and non-cloned code with respect
to addition, deletion and change.

B. Step 2: Implementing the selected methods

The selected methods are implemented using Java. More-
over, as we will use the previously mentioned four tools
to implement each of the methods, there will remain four
working copies of each of them after we have completed the
implementations. Thus, for the 9 selected methods we will
have 36 working systems in total.

C. Step 3: Analyzing metrics to make a combined decision

We apply each of the working systems on each of the
subject systems to make the final decision (Section V).

V. OUR PROPOSED DECISION MAKING STRATEGY

For each combination of tools and subject systems,
we will run the selected nine methods and generate their
corresponding metrics. While we will observe and analyse
the data for each of the individual runs, the overall decision
will be made in the following way.

Let the number of methods = m
Methods are denoted by Mi where 1 ≤ i ≤ m
Let the number of tools used = t
Tools are denoted by Tj where 1 ≤ j ≤ t
Let the number of subject systems = c
Subject Systems/Code Bases are denoted by Ck where
1 ≤ k ≤ c
From each combination of tools and subject systems the
decision made for a method is denoted Dijk

Where i is the index of the method



Table IV
RESULTS FOR HOTTA ET AL. [2] AND KRINKE [9]

System/Method Hotta et al. [2] Krinke [9]

Su
bj

ec
t

Sy
st

em

U
p

to
/i
th

R
ev

is
io

n

M
F

of
C

C

M
F

of
no

n-
C

C

Fi
le

s
w

ith
C

C

%
of

fil
es

w
he

re
C

C
is

ol
de

r
th

an
no

n-
C

C

%
of

fil
es

w
he

re
C

C
is

yo
un

ge
r

th
an

no
n-

C
C

ThreeCAM 14 7.64 4.02 12 25.00 16.67
DatabaseToUML 60 11.05 47.28 57 1.75 7.02
jEdit 150 1.44 4.45 317 9.46 44.16
NatMonitor 88 5.09 3.35 2 0.00 100.00
OpenYMSG 100 10.32 9.04 14 24.00 16.67
MF: Modification Frequency, CC: Cloned Code

j is the index of the selected tool
k is the index of the selected code base.

For each method Mi, we get (t × c) sets of the metrics
defined for Mi. As a result, for each Mi we will have a total
of (t×c) decisions. From these decisions we will calculate a
combined decision CombinedDecision (Mi) for method Mi.
CombinedDecision(Mi) = ∪t

j=1 ∪c
k=1Dijk (1)

Thus, from m methods we will get m combined decisions.
From these m decisions we will possibly get an unbiased
overall decision about the impact of clones on software
maintenance. The overall decision is expressed as follows.
OverallDecision(m) = ∪m

i=1 CombinedDecision(Mi) (2)

The unit values of D will be between -1 to +1 depending
on whether a particular metric of a particular method in-
dicates a negative or positive impact of clones on software
maintenance for a particular subject system with a particular
subject clone detection tool. It remains for us to determine
how the results of the different methods will be mapped to
this range.

VI. EXPERIMENTAL RESULTS

So far we have implemented three methods proposed by
(i) Hotta et al. [2], (ii) Krinke [9] and (iii) Lozano and
Wermelinger [12] using SVN repositories and have obtained
results for the first two methods. The results are listed in
Table IV for five subject systems where we use CCFinderX
for clone detection. Here the minimum length of the clones
for CCFinderX was specified as 50 tokens.

Results in the second column of Table IV comply with
those reported by Hotta et al. [2]. Out of five examined
subject systems, two exhibit lower modification frequencies
for cloned code than non-cloned code where the remaining
three yields the opposite results.

The results in the last column of Table IV were obtained
with Krinke’s method [9] using the same five subject systems
from which only jEdit was used in the original study [9],

however, we used the 150th revision, whereas in the original
study he used the 19285th revision. Moreover, we used
CCFinderX while he used Simian. For three out of the
five subject systems, the calculated metrics’ values do not
suggest the stability of cloned code over non-cloned code.

Most striking is that for four out of the five systems, the
two methods have contradicting results: For two systems,
Krinke’s method [9] shows the stability of cloned over non-
cloned code with a greater proportion of files where cloned
code is older than non-cloned code. On the other hand,
the method proposed by Hotta et al. [2] suggests a higher
stability of non-cloned code over cloned code by showing a
lower modification frequency for the non-cloned code. For
two other systems, it is the other way round. Only for the
smallest system (NatMonitor) do both methods agree.

VII. CONCLUSIONS

In conclusion, it can be argued that our empirical study
will resolve a long lived debate about the impact of clones on
software maintenance. From this study we expect to draw a
firm decision on whether cloning is harmful for software
maintenance, and if so to what extent. We then plan to
determine what could be done to overcome the harmful
effects (if any) of clones during maintenance including a
novel proposal for a clone management system.

Acknowledgments: This work is supported in part by
the Natural Sciences and Engineering Research Council of
Canada (NSERC).

REFERENCES

[1] L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained: An
empirical study,” Proc. CSMR, 2007, pp. 81–90.

[2] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More Frequently
Modified than Non-duplicate Code in Software Evolution?: An Empirical Study
on Open Source Software,” Proc. EVOL/IWPSE, 2010, pp. 73–82.

[3] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones
Matter?,” Proc. ICSE, 2009, pp. 485– 495.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic token-
based code clone detection system for large scale source code,” TSE, 28(7),
2002, pp. 654–670.

[5] C. Kapser and M. W. Godfrey, ““Cloning considered harmful” considered
harmful: patterns of cloning in software,” Emp. SE. 13(6), 2008, pp. 645–692.

[6] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical study of code
clone genealogies,” Proc. ESEC-FSE, 2005, pp. 187–196.

[7] J. Krinke, “A study of consistent and inconsistent changes to code clones,” Proc.
WCRE, 2007, pp. 170–178.

[8] J. Krinke, “Is cloned code more stable than non-cloned code?,” Proc. SCAM,
2008, pp. 57–66.

[9] J. Krinke, “Is Cloned Code older than Non-Cloned Code?,” Proc. IWSC, 2011,
7 pp. (to appear)

[10] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Evaluating the Harmfulness of
Cloning: A Change Based Experiment,” Proc. MSR, 2007, pp. 18.

[11] A. Lozano and M. Wermelinger, “Tracking clones imprint,” Proc. IWSC, 2010,
pp. 65–72.

[12] A. Lozano, and M. Wermelinger, “Assessing the effect of clones on changeabil-
ity,” Proc. em ICSM, 2008, pp. 227–236.

[13] C.K. Roy and J.R. Cordy, “NICAD: Accurate Detection of Near-Miss Intentional
Clones Using Flexible Pretty-Printing and Code Normalization,” Proc ICPC,
2008, pp. 172–181.

[14] C. K. Roy and J. R. Cordy, “A mutation / injection-based automatic framework
for evaluating code clone detection tools,” Proc. Mutation, 2009, pp. 157–166.

[15] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy, and K. A. Schneider,
“Evaluating code clone genealogies at release level: An empirical study,” Proc.
SCAM, 2010, pp. 87–96.

[16] Scorpio. http://www-sdl.ist.osaka-u.ac.jp/∼higo/cgi-bin/moin.cgi/scorpio-e/.
[17] Simian-similarity analyser. http://www.redhillconsulting.com.au/products/

simian/
[18] S. Thummalapenta, L. Cerulo, L. Aversano, and M. D. Penta, “An empirical

study on the maintenance of source code clones,” ESE, 15(1), 2009, pp. 1–34.


