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Abstract Modern applications are often developed using a combination of
programming languages and technologies. Multi-language systems offer oppor-
tunities for code reuse and the possibility to leverage the strengths of multiple
programming languages. However, multi-language development may also im-
pede code comprehension and increase maintenance overhead. As a result of
this, developers may introduce design smells by making poor design and im-
plementation choices. Studies on mono-language systems suggest that design
smells may increase the risk of bugs and negatively impact software quality.
However, the impacts of multi-language smells on software quality are still
under-investigated. In this paper, we aim to examine the impacts of multi-
language smells on software quality, bug-proneness in particular. We performed
survival analysis comparing the time until a bug occurrence in files with and
without multi-language design smells. To have qualitative insights into the im-
pacts of multi-language design smells on software bug-proneness, we performed
topic modeling and manual investigations, to capture the categories and char-
acteristics of bugs that frequently occur in files with multi-language smells.
Our investigation shows that (1) files with multi-language smells experience
bugs faster than files without those smells, and non-smelly files have hazard
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rates 87.5% lower than files with smells, (2) files with some specific types
of smells experience bugs faster than the other smells, and (3) bugs related
to “programming errors”, “external libraries and features support issues”, and
“memory issues” are the most dominant types of bugs that occur in files with
multi-language smells. Through this study, we aim to raise the awareness of
developers about the impacts of multi-language design smells, and help them
prioritize maintenance activities.

Keywords Design Smells, Code Smells, Multi-language Systems, Mining
Software Repositories, Empirical Studies, Survival Analysis

1 Introduction

Design smells have been defined by Fowler as symptoms of poor design and
implementation choices that can have adverse impacts on software quality [17].
Developers working under a tight schedule, and-or who do not have adequate
knowledge or experience required to solve a specific problem, often make poor
decisions leading to design smells. Design smells in mono-language systems
have been widely studied in the literature and have been found to impact
program comprehension [1] and increase the risk of bugs [66]. Several studies
report that classes containing design smells are significantly more bug-prone
and change-prone than classes without smells [30,31,64,69,81].

However, existing studies on design smells primarily focus on mono-language
projects and do not consider the smells related to the interaction between com-
ponents written in different programming languages (i.e., multi-language de-
sign smells). Multi-language development offers several advantages to software
engineering [33,37]. Today, developers frequently use more than one program-
ming language to develop a single application. Developers no longer need to
reinvent the wheel by implementing the code from scratch. Instead, they can
reuse existing components and external libraries to reduce the development
time and cost [2,37,73]. By combining programming languages, multi-language
systems also allow overcoming the weaknesses that could be related to some
programming languages. The possibility to leverage the strengths of multi-
ple programming languages and to reuse existing code samples are two main
reasons behind the proliferation of multi-language systems. By combining pro-
gramming languages, developers’ productivity and agility (i.e., the ability to
act rapidly) may be improved [33].

Multi-language systems usually rely on the Foreign Function Interface
(FFI) to call from one programming language, routines or services written
in another programming language. Java Native Interface (JNI) and Python/C
are some types of FFI. In this paper, we study one specific type of FFI, the JNI
systems (i.e., systems with Java and C/C++ programming languages). The
advantages of multi-language systems come with new challenges. The inherent
differences among the programming languages warrant multi-language exper-
tise for the developers. Besides, the correct implementation of inter-language
communication imposes additional complexities and compatibility challenges.
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Indeed, studies report that multi-language development increases the cognitive
overhead of code [33,52,63]. Such difficulties unfortunately might lead to bugs
that are hard to detect and debug. An example of bugs related to the design
smells discussed in this paper was reported in 2018 in libguests, due to a
misuse of the JNI guidelines. There were missing checks for Java exceptions
after JNI calls and also leak local references1.

Since multi-language systems consist of combining programming languages
with different semantics and lexical programming rules, those systems intro-
duce new design patterns and design smells that consider the interaction be-
tween programming languages [3,4,20,21,22,54]. There exist a few works in
the literature that discussed the patterns, bad practices, and common issues re-
lated to multi-language programming [20,21,22,54,72,73]. However, there has
been limited focus on the impacts of multi-language smells on software quality.
An extensive catalog of multi-language design smells was published by Abidi
et al. [3,4]. In a recent study, we performed an empirical investigation of the
impact of the proposed catalog on software bug-proneness [5]. We analyzed
98 releases of nine open source multi-language projects. From our analysis, we
found that the risk of bugs is higher in files with multi-language design smells
than in files without occurrences of multi-language smells. We also found that
some specific smells are more likely to introduce bugs than other design smells.
However, in that study, we investigated the correlation between smells and
bugs without considering the time-to-bug occurrence. Thus, to complement
our previous work, in this paper, we perform an empirical study investigating
the time to bug occurrence in files with and without multi-language design
smells using survival analysis. The knowledge about the time to bug occur-
rence is useful to understand the importance of multi-language design smells
and their impacts on software quality. Moreover, having the timeline infor-
mation could help prioritize the testing activities by knowing which smells
should be considered in priority. Earlier studies investigating the lifespan and
impact of design smells on software bug-proneness in mono-language systems
also used survival analysis [24,28,51,66]. Survival analysis is well-suited for
capturing and analyzing time-to-event data, making it an appropriate choice
for studying the time to bug occurrence in multi-language files.

In this study, we analyzed 270 snapshots of eight multi-language projects
and performed survival analysis to compare the time until a bug occurrence
in files with and without multi-language smells. The objective here is to inves-
tigate whether the files with multi-language design smells have lower survival
probabilities to bug occurrence compared to files without those smells and to
assess the impacts of multi-language smells on bug-proneness. To gain a deep
insight into these impacts, we combine quantitative and qualitative analysis.
In particular, we examine (1) the survival time of files with and without multi-
language design smells until the occurrence of bugs, (2) the survival time of
the files containing each type of multi-language design smell until the occur-

1 https://bugzilla.redhat.com/show_bug.cgi?id=1536762
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rence of bugs, (3) the categories of bugs that occur in files with multi-language
smells, and (4) the design smell types associated with each bug category.

Our results show that: files containing multi-language smells experience
bugs faster than files without a multi-language smell. Multi-language smells
are not equally bug-prone. Developers should give particular attention to files
containing design smells of types Not Handling Exceptions, Local References
Abuse, Memory Management Mismatch, Assuming Safe Return Value, Unused
Parameters, and Unused Method Declaration and prioritise them for refactor-
ing. Programming errors, and issues related to libraries and features support,
and memory are the most dominant types of bugs occurring in multi-language
smelly files. The design smells Unused Method Declaration, Excessive Inter-
language Communication, Unused Parameters, Not Handling Exceptions are
the most dominant types of smells among the bug categories. We believe that
our results could help researchers and developers involved in the development
of multi-language systems. Having knowledge of the potential impacts of multi-
language smells could help to improve the quality of multi-language systems
and reduce the challenges related to their maintenance and evolution. Devel-
opers could take benefits from knowing the design smell types that are more
likely to introduce bugs to treat them as a priority and prevent their occur-
rences in the system.

The remainder of this paper is organized as follows. Section 2
presents related work and introduces background information about multi-
language systems and presents the studied design smells. Section 3 describes
our methodology. Section 4 reports our results, while Section 5 discusses these
results and their implications. Section 6 summarises the threats to the validity
of our work. Section 7 concludes the paper and discusses future works.

2 Background Information and Related Work

We present in this section the background of this study and discuss the liter-
ature related to this work.

2.1 Background Information

We provide in the following an overview of multi-language systems, Java Native
Interface, and the studied design smells.

2.1.1 Multi-language Systems

Multi-language systems are systems that are developed with a combination
of at least two programming languages. Such systems are gaining popular-
ity because of their different inherent benefits. Developers often leverage the
strengths of programming languages and reuse existing code to cope with the
challenges of building complex systems [53,59,77]. However these systems also
introduce new challenges related to their development and maintenance [33,
52].
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While some applications could be entirely developed in Java, there are sit-
uations where Java alone does not fully meet the needs of the application. In
such situations, developers use Java Native Interface (JNI by combining Java
and native code. JNI is a foreign function interface programming framework
for multi-language systems. JNI enables developers to invoke native functions
from Java code and also Java methods from native functions[26,41]. It allows
to perform hardware and platform-specific features. JNI also increases the
performance with the help of low-level libraries for computation and graphic
operations [73].2 JNI is widely studied in the literature, several studies dis-
cussed the benefits, challenges, and issues related to JNI systems. We present
in Fig. 1 an example of a JNI code extracted from [41]. Fig. 1(a) presents a
Java class that contains a native method declaration Print() and loads the
corresponding native library while Fig. 1(b) presents the C file that contains
the implementation of the native function Print().

(a) JNI method declaration

class HelloWorld {

static {
System.loadLibrary("HelloWorld");}

private native void print();

public static void main(String[] args)
{ new HelloWorld().print();
}

}

(b) JNI implementation function

#include <jni.h>
#include <stdio.h>
#include "HelloWorld.h"

JNIEXPORT void JNICALL
Java_HelloWorld_print(JNIEnv

*env, jobject obj)
{

printf("Hello World\n");
return;

}

Fig. 1: JNI HelloWorld Example

2.1.2 Design Smells

Patterns were initially introduced in the domain of architecture by Alexander
[7]. Gamma et al. [18] later introduced Design patterns in software engineer-
ing. Design patterns are defined as common guidelines and repeatable “good”
solutions to solve recurrent problems. By contrast, design smells (i.e., anti-
patterns and code smells), are considered as symptoms of poor design and im-
plementation choices. They represent violations of the best practices that often
indicate the presence of bigger design or implementation problems [12,17]. In
this paper we use design smells to refer to both code smells and anti-patterns.
Several studies in the literature investigated the impacts of mono-language
design smells (smells that occur in components written in a single program-
ming language) and reported that files containing occurrences of design smells
are significantly more bug-prone and change-prone compared to files without
smells [30,64,69,81].

2 https://hal.archives-ouvertes.fr/hal-01277940/document
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Multi-language design smells are defined as poor design and implemen-
tation choices that affect the quality of multi-language systems. A few pa-
pers in the literature discussed the design patterns and design smells related
to multi-language systems [20,21,22,54,72,73]. However, an extensive cata-
log was published by Abidi et al. [3,4]. We briefly describe in Table 1 the
design smells studied in this paper extracted from the catalog proposed by
Abidi et al. [3,4]. While some of the studied design smells (e.g., Not Han-
dling Exceptions, Not Securing Libraries, Too Much Clustering) could apply
to the context of mono-language systems, in this study we are considering ex-
clusively the situations where the design smells occur in the context of multi-
language systems by considering the interaction of programming languages.
For example, for the design smell Not Handling Exceptions, we consider
the exceptions resulting from the combination of programming languages. In
the case of JNI, when the native code is being called from Java, the excep-
tions do not disturb the control flow. Handling of such exceptions is postponed
until returning back to Java code. Therefore, developers should explicitly im-
plement the exception handling mechanism for any exception that occurs in
the native code. Mishandling exceptions, especially in multi-language environ-
ments, can lead to security vulnerabilities [72,73]. For the design smell Not
Securing Libraries, we consider situations where the native library is not
implemented in a secured block to ensure that the library cannot be loaded
without permission. For the design smell Too Much Clustering, we consider
situations where the class contains an excessive number of native methods that
are declared in that class but implemented in the native code. As outlined in
the previously published catalog [3,4], multi-language systems inherently pose
greater difficulties in comprehension and introduce additional challenges com-
pared to mono-language systems. These challenges primarily stem from the
incompatibilities among programming languages and the heterogeneity of sys-
tem components. The presence of design smells occurrences in such systems
is anticipated to amplify the maintenance-related challenges and introduce
heightened complexity. Identifying occurrences of design smells and-or fixing
bugs across various programming languages could be a challenging task for
maintainers.

Figure 2 illustrates an example of JNI code with occurrences of some of
the studied smells. In Fig. 2(a), System.loadLibrary("Vulnerable") presents an
occurrence of the smell Not Securing Libraries. The native library is loaded
without any security checks. Thus, malicious code can call native methods
from the library, this may impact the security and reliability of the system [3,
47]. A possible solution would be to load the library within a secured block via
AccessController.doPrivileged. In Fig. 2(b), the use of data returned by native
methods e.g., GetByteArrayElements without performing checks or throwing
exceptions presents occurrence of the smell Not Handling Exceptions and could
lead to bugs and leave security breaches open to malicious code [34,40].

Listing 1 presents an example extracted from Rocksdb. In this example, the
method GetIntArrayElement is used to capture a Java array. However, the
memory is not released using ReleaseObjectArrayElement.
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(a) Design Smell - Not Securing Libraries

private native void bcopy(byte[] arr);
public void byteCopy(byte[] arr) {
bcopy(arr);}
static{ System.loadLibrary("Vulnerable"); }

(b) Design Smell - Not Handling Exception

void Java_Vulnerable_bcopy
(JNIEnv *env, jobject obj, jbyteArray jarr) {
char buffer[512];
if ((*env)->GetArrayLength(env, jarr) > 512) {
JNU_ThrowArrayIndexOutOfBoundsException(env,0);}
jbyte *carr=(*env)
GetByteArrayElements(env,jarr,NULL);
strcpy(buffer, carr);}

Fig. 2: Example of Multi-language Smelly Code

Listing 1: Design Smell - Memory Management Mismatch
/∗ C ∗/
void Java_org_rocksdb_Options_setMaxBytesForLevelMultiplierAdditional(

jintArray jmax_bytes_for_level_multiplier_additional) {
jsize len = env−>GetArrayLength(jmax_bytes_for_level_multiplier_additional);
jint ∗additionals =

env−>GetIntArrayElements(jmax_bytes_for_level_multiplier_additional, 0);;

Listing 2 illustrates an example of the smell Assuming Safe Return Value ex-
tracted from OpenDDS. Here, if the class clazz or one of its methods is not
found, the native code will cause a crash as the return value is not checked
properly. Checking return values in the context of multi-language code allows
confirming that the call to a method from one programming language to an-
other programming language was performed correctly. We present in Listing 3
an example of the design smell Local References Abuse, where local references
are created but not deleted accordingly.

Listing 2: Design Smell - Assuming Safe Multi-language Return Values
/* C */
CORBA::Object_ptr ptr = recoverTaoObject(jni, jThis);
if (CORBA::is_nil(ptr)) return 0;
CORBA::Object_ptr dupl = CORBA::Object::_duplicate(ptr);
jclass clazz = jni->GetObjectClass(jThis);
jmethodID ctor = jni->GetMethodID(clazz, "<init>", "(J)V");
return jni->NewObject(clazz, ctor, reinterpret_cast<jlong>(dupl));

}
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Table 1: List of the Studied Multi-language Design Smells

Design Smells Definition
Assuming Safe Return
Value

Not checking multi-language return values may lead to errors and
security issues.

Excessive Inter-
language Communica-
tion

A wrong partitioning in components written in different lan-
guages leads to many calls in one way or the other.

Excessive Objects Passing excessive objects from Java to native code could lead to
extra overhead to properly handle Java types.

Hard Coding Libraries Not correctly loading library could bring confusion and make it
hard to know which library has really been loaded.

Local References
Abuse

Pay attention to the number of references created and always
deleted the local references once not needed.

Memory Management
Mismatch

JNI handles Java objects as reference types by allocating memory.
That memory should be released after usage.

Not Caching Objects Looking up class objects from native code is expensive, it is rec-
ommended to globally cache commonly used IDs.

Not Handling Excep-
tions

Mishandling native exceptions may lead to vulnerabilities and
leave security breaches open to malicious code.

Not Securing Libraries A common way to load the native library in JNI is the use of the
method loadLibrary without a secure block.

Not Using Relative
Path

Library is loaded by using an absolute path to the library instead
of the corresponding relative path.

Too Much Clustering Too many native methods declared in a single class would de-
crease readability and maintainability of the code.

Too Much Scattering Classes are scarcely used in multi-language communication with-
out satisfying both the coupling and the cohesion.

Unused Method Imple-
mentation

A method declared in the host language and implemented in the
native code. However, this method is never used.

Unused Method Decla-
ration

A method is declared in the host language, however is never im-
plemented in the native code.

Unused Parameters Parameters are present in the method signature however they are
no longer used in the other programming language.

Listing 3: Design Smell - Local References Abuse
/* C++ */
for (int i = 1; i < len; ++i) {

jstring arg = reinterpret_cast<jstring>
(env->GetObjectArrayElement(args, i - 1)); }

2.2 Related Work

We discuss in the following studies relevant to our work.

2.2.1 Multi-language Systems:

Several studies in the literature discussed multi-language systems [29,35,38,
45,46,54]. Kullbach et al. [37] investigated the quality of multi-language sys-
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tems. They reported that program understanding for multi-language systems
presents an essential activity during software maintenance and that it pro-
vides a large potential for improving the efficiency of software development
and maintenance activities. Linos et al. [46] later argued that no attention has
been paid to the issue of measuring multi-language systems’ impact on pro-
gram comprehension and maintenance. They proposed Multi-language Tool
(MT); a tool for understanding and managing multi-language programming
dependencies. Kontogiannis et al. [35] stimulated discussion around key is-
sues related to the comprehension, reengineering, and maintenance of multi-
language systems. They performed discussion sessions to attract researchers
with an interest in understanding and maintaining multi-language systems.
They argued that creating dedicated multi-language systems, methods, and
tools to support such systems is expected to have an impact on the soft-
ware maintenance process which is not yet known. Similarly, Kochhar et al.
[33] studied open-source projects from GitHub to investigate the impact on
software quality of using several programming languages. They reported that
the use of more than one programming language significantly increases bug
proneness. They claimed that design patterns and anti-patterns were present
in multi-language systems and suggested that researchers study them thor-
oughly. They also suggested further studies to investigate the benefit of using
multiple languages in developing software systems. Kondoh et al. [34] pre-
sented four types of JNI mistakes made by developers. They proposed a static
analysis tool to find a set of common mistakes in critical code sections. Tan et
al. [73] studied a range of bug patterns in the native code of the JDK and ex-
tracted six common bugs. The authors proposed an approach to prevent these
bugs. Li and Tan [40] reported the risks induced by the exception mechanisms
in Java. They also highlighted the bugs that could result in the native code
from mishandling exceptions.

2.2.2 Impacts of Design Smells:

Several studies have investigated the impact of smells on software quality [15,
32,44,55,56,57,58,60,69,79,80]. However, most of these studies target mono-
language systems. Khomh et al. [30] reported that classes with occurrences of
design smells are more likely to be the subject of changes than classes without
those occurrences. Olbrich et al. [55] proposed an approach that analyses the
evolution of design smells and study their impact on the frequency and size
of changes. They study two design smells: God Class and Shotgun Surgery.
They used an automated approach based on detection strategies to detect the
occurrences of design smells. They identified different phases in the cycle of
design smells evolution during the different phases of the system development.
They also found that components infected by design smells exhibit different
behavior. Abbes et al. [1] conducted three experiments to capture the impact
of occurrences of design smells on developers’ understandability of systems
when performing maintenance tasks. This study has been replicated by Poli-
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towski et al. [60], confirming the findings. They reported that the occurrence
of one type of smell does not significantly impacts program comprehension.
However, the combination of two types of smells negatively impacts program
comprehension. Saboury et al. [66] conducted a survival analysis of JavaScript
design smells and compared the time to fault between files with and without
JavaScript smells. They reported that JavaScript smells negatively impact the
quality of JavaScript projects. Muse et al. [51] performed an empirical study
on the prevalence and impact of SQL design smells. They reported that SQL
smells are prevalent and persist in the studied open-source projects and that
they have a weak association with bugs. Morales et al. [50] performed an em-
pirical study on three open source projects investigating the impacts of code
review practices on software design quality. They considered seven types of
mono-language design smells. Their results suggest that software components
with low review coverage are often more prone to the occurrences of design
smells compared to software components with more active review coverage.
They reported that even if code review coverage has an impact on the occur-
rence of design smells, it is not sufficient to avoid the occurrences of design
smells. They argued that good code review practices could help improving the
software design quality. Borrelli et al. [11] recently documented seven types of
smells for video games. They proposed UnityLinter, a static analysis tool that
detects occurrences of video games design smells. They also surveyed 68 prac-
titioners. They reported that developers are concerned by performance and
behavior issues. However, they were less concerned by maintainability issues.
Abidi et al. [6] performed an empirical study on 98 releases of JNI systems
and investigated prevalence and impacts of multi-language design smells on
software quality. They reported that multi-language smells are prevalent in
open-source projects and that they persist throughout the releases of the sys-
tems. They also claimed that some kinds of smells are more prevalent than
others. Their results suggest that multi-language smells can often be more as-
sociated with bugs than files without smells. Our study is complementary to
this previous work. However, our analysis is at a finer level of granularity (i.e.,
snapshots level). Furthermore, in the previous study we report the correlation
between smells and bugs without considering the time to bug occurrence. In
this study we emphasize on the timeline and risk level of the introduction of
bugs. Correlation and survival analysis are both useful to study the impact
associated with design smells. Therefore, we believe that these two studies are
complementary and important to clearly capture the impact of multi-language
design smells on software bug-proneness. In addition, we are reporting the most
dominant types of bugs that occur in multi-language smelly files.

In contrast with the studies discussed in this section, our work presents
the first empirical study that investigates the impact of multi-language smells
on the time of bug occurrences. We believe that our study could serve as a
guideline for further studies on multi-language design patterns and smells and
their impacts on software quality.
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3 Study Design

We present in this section our methodology to perform this study. Figure 3
provides an overview of the methodology.

GitHub
Repository

Identification of Bug
Fixing Commits

Identification of Bug
Inducing Commits

Parsing Using SrcMl

Snapshot Generation

Applying Detection
Rules

Data Analysis

RQ1

RQ 2

RQ3

Mining Software Repository

Multi-language Design Smells Detection

File Evolution Tracking Data MappingExtraction of Commit
messages

RQ4

Fig. 3: Schematic Diagram of the Study

3.1 Setting Objectives of the Study

Our goal in this study is to investigate the relationship between the occurrence
of multi-language design smells and the occurrence of bugs over time. The
quality focus is the survival of multi-language files before the occurrence of a
bug and consequently the maintenance efforts due to the presence of multi-
language design smells. The perspective is that of researchers, interested in
improving the quality of multi-language systems, and mitigating the impacts
of multi-language design smells on software bug-proneness. Practitioners will
also benefit from the result of this study since it will allow them to identify the
types of multi-language design smells that are more likely to experience bug
fixes. They will also get insights about the types of bugs occurring in these
smells. This work could also be of interest to testers who need to prioritize
their testing activities and would benefit from knowing which files should be
tested in priority. Finally, they can be of interest to quality assurance teams or
managers who could use the results of our study to assess the bug-proneness
of in-house multi-language projects. This study considers 15 types of multi-
language design smells presented in the catalog of multi-language design smells
[4,3]. We detected and analyzed smells from 270 releases of eight open-source
multi-language projects. We defined the following research questions to achieve
our research objectives:

– RQ1: Is the risk of bugs higher in files with multi-language smells
in comparison with those without smells? Several existing studies
investigated the impact of design smells on bug-proneness but primarily in
mono-language systems. Thus, through this question, we investigate how
long do smelly files survive before a bug occurrence and whether smelly
files survive shorter or longer than files without multi-language smells.

– RQ2: Is the risk of bugs equal from one multi-language design
smell type to the other? During maintenance activities, developers are
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interested in identifying parts of the code that should be tested and–or
refactored in priority. Hence, we are interested in identifying the type of
multi-language design smells that have higher negative impacts on multi-
language systems, e.g., smells that make JNI systems more bug-prone. In
particular, we investigate whether some specific types of multi-language
smells have shorter or longer survival time from bug occurrence in com-
parison to other types of smells.

– RQ3: What are the categories of bugs that exist in multi-language
smelly files? To better capture the impacts of multi-language smells on
software bug-proneness, we believe that it is important to investigate the
types and characteristics of bugs that exist in multi-language smelly files.
Thus, through this research question, we aim to derive insights beyond
our quantitative findings through qualitative analysis and provide a cate-
gorization and characterization of bugs related to files with multi-language
smells.

– RQ4: What are the dominant categories of bugs related to each
type of multi-language smell? As each type of smell points to a specific
type of design deficiency, some specific types of design smells could lead
to different types of bugs. Consequently, the impacts of the smells on the
software quality are likely to vary. Hence, we aim through this question to
study the categories of bugs related to each specific smell type.

3.2 Data Collection and Data Extraction

3.2.1 Data Collection

Our empirical study is based on eight open-source multi-language projects.
We selected these projects because they are well-maintained and highly ac-
tive projects on GitHub. Another criteria for the selection was ‘diversity’, i.e.,
those systems are from diverse application domains, of different sizes, with
varying distributions of multi-language code and differ in lengths of develop-
ment periods. Table 2 summarizes the characteristics of the selected systems.

Among the selected systems, JNA3 is a native shared library. It provides
Java programs easy access to native shared libraries. Rocksdb4 is developed
and maintained by Facebook. It presents a persistent key-value store for fast
data storage, it can also be used for client-server database. Javacpp5 provides
efficient access to native C++ inside Java, unlike some C/C++ compilers that
interact with assembly language. Realm6 is a mobile database that runs di-
rectly inside tablets and smartphones. Pljava7 is a free module that uses the
standard JDBC interface to bring Java Stored Procedures and Functions to

3 https://github.com/java-native-access/jna
4 https://github.com/facebook/rocksdb/
5 https://github.com/bytedeco/javacpp
6 https://github.com/realm/realm-java
7 https://github.com/tada/pljava
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Table 2: Overview of the Studied Systems

Projects Domain #Snapshots LOC Java C/C++
Conscrypt Cryptography

(Google)
32 91,765 85.3% 14%

Frostwire File and Media Shar-
ing

18 403,106 71.4% 19%

Javacpp Compiler 30 28,713 98% 0.6%
JNA Native Shared Library 32 590,208 70.2% 15.4%
OpenDDS Adaptive Communi-

cation
58 2,803,495 5% 16%

Pljava Database 35 71,910 67% 29.7%
Realm Mobile Database 29 171,705 82% 8.1%
Rocksdb Facebook Database 36 487,853 11% 83.1%

the PostgreSQL backend. Frostwire8 is a file sharing client and media man-
agement tool. Conscrypt9 is a Java Security Provider (JSP) that is developed
and maintained by Google. It implements parts of the Java Cryptography Ex-
tension (JCE) and Java Secure Socket Extension (JSSE). OpenDDS10 is an
open source C++ implementation of the Object Management Group (OMG)
Data Distribution Service (DDS).

3.2.2 Snapshot Generation

We used Python scripts to mine repositories on GitHub. For each system,
we clone the repository from GitHub and extract commit logs. We identify
snapshots at every 90 days interval based on the commit logs. We then extract
the selected versions to create snapshots of the code for analysis. We considered
snapshots at each 90 days interval from the first commit to the last commit.
The number of snapshots varies across the systems. In cases where a snapshot
is not available exactly at 90 days interval, we consider the next available
commit after 90 days. We selected 90 days to take quarterly snapshots, which
is a widely used milestone in product road-map timeline [76]. We selected a
total of 270 snapshots from the eight subject systems (shown in Table 2).

3.2.3 Identification of Bug-Fixing and Bug-Inducing Commits

We use Github APIs and PyDriller to mine the software repositories and get
the list of all the commit logs for our subject systems [70]. PyDriller offers a
set of APIs that allows us to retrieve repository information including commits
logs. To identify bug-fixing commits, we used a set of error related keywords
(e.g., fix, fixed, fixes, bug, error, except, issue, fail, failure, crash) using a
heuristic similar to that presented by Mockus and Votta [49]. These keywords
were used in multiple previous studies [5,8,49,51]. We used a Python script
that fetches commits containing at least one keyword from the set of keywords
in the commit messages as bug-fixing commits. Similar to previous studies,

8 https://github.com/frostwire/frostwire
9 https://github.com/google/conscrypt

10 https://github.com/objectcomputing/OpenDDS
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we used PyDriller to capture the bug-inducing commits for each of the bug-
fixing commits [5,39,42,51,62,75]. PyDriller leverages the SZZ algorithm to
detect changes that introduced bugs (i.e., earlier changes to the same code
updated by bug-fixing commits) and returns bug-inducing commits for a given
bug-fixing commit. To locate the bug-inducing commits, PyDriller algorithm
works as follows: for every file in the commit, it obtains the diff between
the files, then obtains the list of all deleted lines. It then blames the file to
obtain the commits where the deleted lines were changed. It returns the set of
commits that previously changed the same lines of code using the git diff and
blame commands. After extracting bug-inducing commits for our eight subject
systems using PyDriller, we performed a manual inspection of the data prior
to our analysis. The first and second author manually inspected the changes in
all the bug-inducing commits reported for the system Pljava. Specifically, they
proceeded as follows: for each bug-fixing commit, the two authors manually
checked if the changes in the bug-inducing commits reported by Pydriller
were indeed related to the corresponding bug-fixing commits. Through this
analysis, they found the precision of the detection of bug-inducing commits to
be 70.83%.

We use these bug-inducing commit dates to calculate the distance (in
hours) from the file creation dates to determine the survival time for our
survival analysis. We decided to compute the distance in hours to reduce pos-
sible noise (e.g., due to day-level rounding of timestamp) in the time data of
our dataset.

3.2.4 File History Tracking

Changes are part of the project development cycle. During the life cycle of a
project, files could be added, removed, modified, renamed or even relocated.
Thus, tracking the file genealogy is necessary to ensure the reliability of the
results that are based on the evolution history of files. We use the git diff
command to compare changes between two consecutive snapshots. The com-
mand returns the list of files that have been either added, modified, renamed,
or deleted between two given commits. The command provides an estimation
on how likely a specific file was renamed. Similar to previous work, we relied
on a similarity threshold of 70% to identify renamed files [28]. Our file tracking
assigns unique IDs for individual files and ensures that different versions of the
same file take the same ID despite renaming or relocation of the files.

3.2.5 Design Smells Detection

We relied on the multi-language smell detection approach we proposed in our
previous work [5]. The detection approach supports 15 types of multi-language
smells as described in the recently published catalog of multi-language design
smells [3,4]. The detection approach is based on a set of predefined detection
rules extracted from the definition and documentation of the design smells.
Those rules were validated during the documentation of the smells by the
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pattern community and are detailed in our previous work [3,4,5]. The approach
relies on srcML11, a parsing tool that converts source code into srcML, which is
an XML format representation. The srcML representation adds into the source
code text syntactic information as XML elements. We present in Listing 5 an
example of the srcML representation of the code snippet presented in Listing
4. SrcML provides a wide variety of predefined functions that could be easily
used through the XPath to implement specific tasks. XPath is frequently used
to navigate through XML nodes, elements, and attributes. In our case, it is
used to navigate through srcML elements generated as an XML representation
of a given project. The approach is applicable in the context of JNI. Thus, our
study is based on JNI systems. The approach was evaluated with six JNI
projects and was reported to have a minimum precision and recall of 88%
and 74% respectively. We detect 15 types of multi-language smells on 270
snapshot of eight selected multi-language systems. Further details about the
smell detection approach and its validation are presented in our previous work
[5]. All the detection results are also available in our replication package.12

Listing 4: Example of Java Code
public class HelloJNI {

public static void main(String[] args) {
// Prints "Hello World" to stdout
System.out.println("Hello World");

}
}

3.2.6 Mapping Bug-Inducing Commits with Design Smells

Since our goal is to investigate the impact of multi-language design smells on
software bug-proneness, the occurrences of the studied smells should exist in
the files before the bugs occur. This was ensured using the bug-inducing com-
mits retrieved by PyDriller. For a specific snapshot St at time t corresponding
to a commit in the repository, we detect the smells occurrences. Then, we iden-
tify the bug-inducing commits between St and St+α that contain the smelly
files from version St. We considered an α of 90 days (or the duration in days to
next available commit after 90 days) defining the time intervals between two
consecutive snapshots. We also collected the bug-inducing commits for non-
smelly files using the same methodology since our objective is to compare the
survival times to bug occurrence in files with smells and that of files without
those smells using survival analysis.

3.3 Data Analysis

In the following subsections, we present the analysis performed to answer our
research questions.
11 https://www.srcml.org/
12 https://github.com/ResearchMLS/Survival_Analysis
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Listing 5: Example of Java Code Converted to SrcML
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<unit xmlns="http://www.srcML.org/srcML/src" revision="0.9.5" language="Java"

filename="HelloJNI.java"><class><specifier>
public</specifier> class <name>HelloJNI</name> <block>{

<function><specifier>public</specifier> <specifier>static</specifier>
<type><name>void</name></type><name>main
</name><parameter_list> (<parameter><decl>
<type><name><name>String</name><index>[]
</index></name></type> <name>args</name>
</decl></parameter>)</parameter_list> <block>{

<comment type="line">// Prints "Hello World" to stdout</comment>
<expr_stmt><expr><call><name>

<name>System</name><operator>.</operator>
<name>out
</name><operator>.</operator><name>println
</name></name><argument_list>
(<argument><expr><literal type="string">"Hello World"</literal>
</expr></argument>)</argument_list></call>
</expr>;</expr_stmt>
}</block></function>

}</block></class></unit>

3.3.1 Survival Analysis

Survival analysis are commonly used in medical research. Recently, researchers
have been applying survival analysis to problems in Software Engineering [14,
24,66,67]. Survival analysis are used to model the expected duration of time
until the occurrence of one or more event(s) of interest. Several models are
used to perform survival analysis. One of the most popular models for survival
analysis is the Cox Hazard model i.e., Cox Proportional Hazards model [14,16,
24,43,66,67]. The purpose of Cox Hazard model is to evaluate simultaneously
the effect of several factors on the survival of specific subjects under study. Cox
Hazard model allows to capture how specific factors influence the rate of the
occurrence of a well-defined event (in our case the introduction of a bug). The
rate is defined as a hazard rate. More specifically, Cox Hazard model analyze
how long specific subjects can survive before a well-defined event occurs. The
following function presents the hazard of the event of bug occurrence at a time
t in Cox models:

λi(t) = λ0(t) ∗ eβ∗Fi(t) (1)

We obtain the following function when we take log from both sides:

log(λi(t)) = log(λ0(t)) + β1 ∗ fi1(t) + ...+ βn ∗ fin(t) (2)

Where,

– Fi(t) represents the function that defines the regression coefficient at the
time t of the observation i.

– β corresponds to the coefficients that measure the impact of covariates in
the function Fi(t).
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– λ0 is called the baseline hazard. It represents the value of the hazard if all
the covariates are equal to zero.

– n represents the total number of covariates.

The baseline hazard λ0 can be considered as the hazard of the occurrence of
the event of interest (bug occurrence in our case) when no covariate presents an
effect on that hazard. The baseline hazard would be omitted when formulating
the relative hazard between two files at a specific time t, as shown in the
following equation:

λi(t)/λj(t) = eβ∗(fi(t)−fj(t)) (3)

In this study, for each file, we apply the Cox model to compute the risk
of bug occurrence over time (in hours), considering a number of independent
covariates. We use the Cox hazard model as it allows subjects (files) to remain
in the model for the whole observation period even if they do not observe the
event (bug occurrence). The subjects can also be grouped based on the covari-
ates (e.g., smelly and non-smelly) and the model is also able to accommodate
the changes in characteristics of the subjects over time.

Hazard ratios (HR) are measures of association widely used in prospec-
tive studies. It is the result of comparing the hazard function among exposed
group (i.e., smelly files in our case) to the hazard function among non-exposed
group (i.e., non-smelly files). Hazard ratio can be considered as an estimation
of possible risk, which is the risk of an event occurrence (i.e., bug occurrence
in our case). A hazard ratio of 1 means that there is a lack of association,
a hazard ratio greater than 1 suggests that there is an increased risk of the
event occurrence, while a hazard ratio below 1 suggests that there is a small
risk that the event will occur.

To answer RQ1, we performed survival analysis and compared the time
until the occurrence of bug in smelly and non-smelly files. For each system
and for each snapshot, we compute the following metrics for each file: Time
represents the survival time as the number of hours from file creation to first
occurrence of bugs. For files without bugs we assign the survival time as the
difference between the file creation time to the end of the analysis period for
that system. Smelly illustrates the covariate of interest. This variable takes
1 if the file contains at least one type of design smell in a specific snapshot
and 0 otherwise. Inducing_Flag reflects our event of interest. It takes 1 if
a specific file i is reported by PyDriller as containing a bug-inducing commit
in that specific snapshot. We divide our dataset into two groups, One group
for files with multi-language smells and the second group for files without
any of the studied multi-language smells. We create Cox model for each of
these groups and used R functions (i.e., Surv and coxph) to analyze the Cox
model. Since the covariate of interest for this study (i.e., the Smelly metric)
is a constant function that presents 1 or 0, thus, for this analysis we can
demonstrate a linear relationship with the event of interest without using a
link function, similarly to what has been done in previous studies investigating
the impact of mono-language design smells on JavaScript projects [28,66].



18 Abidi et al.

To answer RQ2 we perform survival analysis for each type of smells, com-
paring the time until occurrence of a bug in files containing a specific smell
and files without that smell. We follow the same approach as in RQ1 and
compute the metrics Time and Inducing_Flag. We also compute the met-
ric Smellyi which takes the value 1 if the file contains the smell type i in the
specific snapshot and 0 if it does not contain any smell of that type. Because
the following metrics are known to be related to bug-proneness [36,66,68], we
add the file size (LOC), and the number of previous occurrence of bugs to our
model, to control their effect. Here, (i) LOC refers to the number of lines of
code in the file at that specific snapshot; (ii) N.Previous-Bugs is the number
of bug-fixing related to that file before the snapshot r.

3.3.2 Topic Modeling

To answer RQ3 and categorize the bugs existing in multi-language smelly
files, we merged all the bug-fixing commit messages related to smelly files
for all the systems in one file. We use this file as the corpus for the topic
modelling to extract the topic of bugs. We removed stop words using MALLET
[48] stop words list (e.g., a, the, is, this, punctuation marks, numbers, and
non-alphabetical characters). We also used Porter stemmer to reduce words
to their root words (e.g., programmer became program) [61]. We used the
Gibbs [19] algorithms for Latent Dirichlet Allocation LDA [10]. LDA is a
widely adopted topic modeling technique which is able to extract topics from
smaller documents (e.g., commit messages in our case). LDA was used in
several studies in the literature [9,23,25,65,74]. LDA generates topics based
on a set of frequently co-occurring keywords. It is a probabilistic approach
that categorizes the topics after a set of iterations I. A document is composed
by a vector of topic probabilities while a topic is presented as a vector of word
probabilities. A topic that exhibits the highest proportional value is considered
as the most dominant topic within that dataset. Similar to previous study
performing topic modeling approach, during the classification we rely on uni-
gram and bi-gram to improve the quality of the text analysis [71]. To discover
the optimal number of topics K, we experimented with different values of K
ranging from 5 to 50, increasing K by 5 at each time. From our analysis, the
LDA generates 20 topics. Each of those topics contains the list of commit
messages used to build that topic along with their probability score. We then
perform manual analysis to assign meaningful names to each topic using the
keywords allowing us to gain insights about the types, characteristics, and
causes of bugs related to multi-language smells. We randomly selected top 20
to 30 documents for each topic as performed in previous studies [71]. The topic
files were shared between the first and second authors of this paper. The topics
were assigned after reaching an agreement. We also group the bug topics into
general categories of bugs that we report in Section 4.

To answer (RQ4), we investigate the types of smells related to each bug
category. In particular, here we reuse the categories and bug types resulting
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Table 3: Bug Hazard Ratios for Each Project

Projects exp(coef) p-value (CHM) p-value (PHA)
Conscrypt 2.598 3.218e-23 0.0001
Frostwire 3.123 1.749e-52 0.641
Javacpp 2.378 3.003e-08 0.164

JNA 5.033 9.526e-32 1.254e-14
OpenDDS 0.229 1.468e-09 0.992

Pljava 1.805 6.425e-05 0.002
Realm 2.747 7.487e-37 9.112e-05

Rocksdb 1.64 6.162e-26 1.258e-05
CHM: Cox Hazard Model, PHA: Proportional Hazards Assumption

from the previous research question (RQ3) and study the distribution of the
different types of multi-language design smells in the buggy files.

4 Study Results

In this section we report our findings and answer each of the four research
questions.

4.1 RQ1: Is the risk of bugs higher in files with multi-language
smells in comparison with those without smells?

To assess the impacts of multi-language design smells on software bug-proneness,
we performed survival analysis and compared the time until the occurrence of
bug in smelly and non-smelly files.

Figure 4 provides the survival curves for native multi-language files with
and without smells for all eight studied systems. Results presented in Fig. 4
show that, in the majority of the studied systems, files with multi-language
design smells experience bugs faster than files without those smells. The X-
axis presents the survival time in hours while the Y-axis presents the survival
probability of a file until the occurrence of a bug. Thus, a low survival rate is
expressed by a low value on the Y-axis. We can clearly see from the survival
curves in Fig. 4 that files with multi-language design smells in most of the
selected systems experience bugs faster in comparison with non-smelly files.
For all our subject systems, we compute the hazard rates between files with and
without design smells. We also performed log-rank test to statistically compare
the survival distribution of files with and without smells. Table 3 presents the
bug hazard ratios for each system. All the systems except OpenDDS present
hazard ratios (exp(coef)) greater than 1. This provides an evidence that files
with multi-language design smells are at higher risk of bugs compared to files
without multi-language smells.

We believe that the results of hazard ratios computed for OpenDDS could
be related to the type of design smells existing in this system, which motivated
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Fig. 4: Survival Curves for Bug-occurrences in Files with (Smelly) and without
(Non-smelly) Multi-language Smells

us to investigate in RQ2 the survival until a bug occurrence for each type
of smell. Our results for RQ1 show that files without multi-language design
smells have hazard rates lower than files with multi-language smells in 87.5%
cases i.e., in 7 out of 8 systems. From the log-rank test, we obtained for all
the subject systems the p-values (Cox hazard model) less than 0.05. Thus, we
reject H1

0. Therefore, we conclude that the risk of bug occurrence is higher
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Table 4: Summary of the Comparative Bug-proneness of Different Types of
Multi-Language Smells

Smells #System SFB NSFB % SFB % NSFB
ASRV 6 4 2 66.67% 33.33%
EO 0 N/A N/A N/A N/A
EXC 7 5 2 71.43% 28.57%
HCL 2 2 0 100.0% 0.0%
LRA 6 5 1 83.33% 16.67%
MM 5 5 0 100.0% 0.0%
NCO 0 N/A N/A N/A N/A
NHE 7 6 1 85.71% 14.29%
NRP 6 3 3 50.0% 50.0%
NSL 8 6 2 75.0% 25.0%
TMC 8 5 3 62.50% 37.50%
TMS 6 3 3 50.0% 50.0%
UMD 8 5 3 62.50% 37.50%
UMI 5 4 1 80.0% 20.0%
UP 8 7 1 87.50% 12.50%
SFB: Number of Systems where smelly files are more bug-prone
than non-smelly files
NSFB: Number of Systems where files without (specific) smells
are more bug-prone than smelly files
#System: Number of Systems where we have hazard ratios for
the concerned smell (covariate)
* Underlined percentage values indicate the top-5 bug-prone smells

(bugs occur faster) in files with multi-language design smells compared to files
without those smells.

4.2 RQ2: Is the risk of bugs equal from one multi-language design
smell type to the other?

Given the observed impacts of the multi-language smells on bug-proneness in
RQ1, it is important to investigate the impact of each type of multi-language
design smells. We performed survival analysis for each type of smells, compar-
ing the time until occurrence of a bug as described in Section 3.

We report in Fig. 5 examples of the survival curves for individual smell
types Memory Management Mismatch for JNA, Local References Abuse for
Pljava, and Not Handling Exceptions and Too Much Clustering for Conscrypt.
The complete results and figures are available in our replication folder.12 These
survival curves in general show that for most of the smell types, files with given
type of smells tend to have lower survival probability compared to files with-
out those smells. This is an indication that files with multi-language smells
are at higher risk of bugs than files without smell. In Table 5 and Table 6,
we present the bug hazard ratios for different multi-language design smells
existing in the studied systems. The value reported in the column exp(coef)
shows the increase or decrease in the likelihood of the hazard (bug occurrence)
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Fig. 5: Survival Curve for Native Smelly Files and Native Non Smelly Files
for all the Projects

that is expected for each unit increase in the value of the corresponding co-
variate. When the hazard ratio for a covariate (predictor) is close to or equal
to 1, the covariate does not affect survival of the subject. Hazard ratio less
than 1 indicates that the covariate is protective (i.e., the covariate contribute
to improved survival) and if the hazard ratio is greater than 1, then the co-
variate contributes to increased risk (or decreased survival). The cases where
the p-values are significant (<0.05) are underlined in Table 5 and Table 6.
So, to evaluate the bug-proneness of individual types of multi-language smells
from survival analysis perspective, we examine the values of the hazard ratios
(exp(coef)) and especially the percentages of cases (systems) where the hazard
ratios are greater than 1. As we observe in Table 5 and Table 6, for most of the
studied systems (except Frostwire and OpenDDS ) the majority of the smell
types have hazard ratios greater than 1, indicating that the files with different
multi-language smells are more bug-prone compared to the files without those
smells. However, the hazard ratios vary across the types of multi-language
smells and across the studied systems.

To have a better view of the comparative bug-proneness of individual types
of multi-language smells, we present a summary of the results presented in Ta-
ble 5 and Table 6 in Table 4. Here, each row in Table 4 shows the summary
of the survival analysis results for all the eight studied systems for a specific
type of smell. For example, for the smell type Unused Parameters, the Cox
Hazard Models successfully compute the hazard ratios (HR) for all the eight
(8) systems we studied, given the constraints on the data requirements and
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Table 5: Hazard Ratios for Each Type of Multi-language Design Smells
(higher exp(coef) values means higher hazard rates) 1/2

Projects Covariate exp(coef) Rank p-value (CHM) p-value
(PHA)

Conscrypt

LOC 2.59 – 3.218e-23 0.0001
EXC 7.72 6 1.393e-21 0.0009
TMC 8.025 5 5.368e-29 0.178
UMD 8.088 4 1.228e-31 0.461
UP 1.889 9 5.017e-10 0.0013
ASRV 8.278 3 1.117e-15 0.196
NHE 8.278 3 1.117e-15 0.196
NSL 2.345 8 0.025 1.113e-06
NRP 2.825 7 0.0065 4.411e-06
MM 19.60 1 1.924e-27 0.0002
LRA 19.077 2 1.167e-37 0.0001

Frostwire

EXC 1.065 – 0.95 0.155
TMC 0.975 – 0.98 0.135
UMD 2.252e-

06
– 0.980 0.997

UMI 2.279 – 0.41 0.153
UP 3.163 1 1.206e-53 0.617
ASRV 6.138e-

06
– 0.984 0.997

NHE 2.25 – 0.985 0.998
NSL 0.339 – 0.279 0.146
NRP 0.403 – 0.365 0.144

Javacpp

EXC 1.604 6 0.021 0.089
TMC 3.443 5 1.699e-05 0.314
TMS 1.310 – 0.1612 0.164
UMD 3.875 4 7.218e-11 0.008
UP 9.53 3 0.001 0.34
NSL 11.94 2 9.3172e-26 0.003
HCL 16.35 1 4.397e-13 8.184e-06

JNA

PrevBugs 5.033 – 9.526e-32 1.254e-14
EXC 33.518 7 1.156e-17 0.139
TMC 30.929 9 1.830e-19 0.177
TMS 30.71 10 2.142e-24 0.028
UMD 235.726 1 5.60e-08 0.100
UMI 168.518 2 3.295e-07 0.113
UP 3.911 11 1.196e-18 1.192e-11
ASRV 161.083 3 4.155e-07 0.111
NHE 69.77 4 4.153e-21 0.612
NSL 62.422 5 1.893e-16 0.533
NRP 62.422 5 1.893e-16 0.533
MM 60.852 6 2.919e-16 0.613
LRA 33.298 8 1.343e-17 0.163

Acronyms: NURP: NotUsingRelativePath, TMS: ToomuchScattering
TMC: Toomuchclustring, EILC: ExcessiveInterlangCommunication
ASR: AssumingSafeReturnValue, UM: UnusedMethodDeclaration
NSL: NotSecuringLibraries, NHE: NotHandlingExceptions
MMM: MemoryManagementMismatch, LRA: LocalReferencesAbuse
CHM: Cox hazard Model, PHA: Proportional Hazards Assumption
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Table 6: Hazard Ratios for Each Type of Multi-language Design Smells
(higher exp(coef) values means higher hazard rates) 2/2

Projects Covariate exp(coef) Rank p-value (CHM) p-value
(PHA)

OpenDDS

LOC 0.229 – 1.469e-09 0.992
TMC 2.251e-

06
– 0.968 0.999

TMS 8.228e-
07

– 0.966 0.999

UMD 2.2498e-
06

– 0.966 0.999

UMI 6.133e-
06

– 0.967 0.999

UP 0.273 1 1.346e-06 0.468
ASRV 0.732 – 0.59 0.177
NHE 0.612 – 0.395 0.178
NSL 2.251 – 0.968 0.999
NRP 6.139e-

06
– 0.978 0.999

LRA 6.139e-
06

– 0.9787 0.999

Pljava

LOC 1.80 – 6.43e-05 0.0027
EXC 0.565 – 0.569 0.58
TMC 1.008 – 0.988 0.339
TMS 0.833 – 0.525 0.101
UMD 1.217 – 0.404 0.028
UMI 1.867 – 0.38 0.611
UP 2.006 3 2.590e-05 0.004785
NHE 5.666 2 0.0001 0.082
NSL 1.67e-05 – 0.991 0.91
NRP 1.669e-

05
– 0.991 0.99

MM 2.613 – 0.176 0.877
LRA 26.196 1 5.31e-30 1.857e-05

Realm

PrevBugs 2.746 – 7.487e-37 9.1123e-05
EXC 5.015 5 2.426e-31 0.0945
TMC 4.729 6 2.17e-32 0.001
TMS 2.259 9 0.0008 0.69
UMD 5.305 4 1.693e-13 0.01
UMI 5.717 3 1.136e-12 0.043
UP 1.996 10 2.126e-11 4.169e-05
ASRV 2.482 8 0.010 0.913
NHE 1.91 11 0.005 0.40
NSL 2.922 7 0.009 0.958
MM 6.88 2 8.748e-09 0.21
LRA 6.975 1 0.0001 0.0020

Rocksdb

LOC 1.64 – 6.162e-26 1.258e-05
EXC 0.610 5 0.019 0.144
TMC 0.573 6 0.0012 0.008
TMS 0.22 – 2.246 0.194
UMD 0.876 – 0.598 0.130
UP 2.677 4 2.451e-87 3.741e-06
ASRV 3.186 3 3.116e-08 0.177e-06
NHE 3.186 3 3.116e-08 0.177e-06
NSL 1.064 – 0.846 0.098
HCL 2.256 – 0.972 0.999
NRP 2.062 – 0.05 0.039
MM 3.279 2 0.0003 0.087
LRA 5.10 1 2.677e-07 0.939

Acronyms: NURP: NotUsingRelativePath, TMS: ToomuchScattering
TMC: Toomuchclustring, EILC: ExcessiveInterlangCommunication
ASR: AssumingSafeReturnValue, UM: UnusedMethodDeclaration
NSL: NotSecuringLibraries, NHE: NotHandlingExceptions
MMM: MemoryManagementMismatch, LRA: LocalReferencesAbuse
CHM: Cox hazard Model, PHA: Proportional Hazards Assumption
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statistical assumptions for the Cox models. Out of these eight (8) systems,
for 7 systems we have hazard ratios greater than 1 (exp(coef) > 1) while for
the remaining one (1) system (OpenDDS ) the hazard ratio is less than 1 (as
in Table 5 and Table 6). We count the metric SFB as the number of systems
where the smelly files with the smell type (Unused Parameters in this case)
have exp(coef) > 1. We also count NSFB as the number of systems where
the smelly files with the given smell type have exp(coef) < 1. Here, SFB rep-
resents the number of systems where the files with the given smell is more
bug-prone (at higher risk of bugs) than files without those smells, while NSFB
shows the number of systems where file with the given smell type are less
bug-prone (at lower risk of bugs) compared to files with given type of smells.
We also present the corresponding percentages for the SFB and NSFB, having
values 87.50% (7/8) and 12.50% (1/8) for Unused Parameters. For smell types
(Excessive Objects and Not Caching Objects) where we could not compute
hazard ratios for the studied systems, we report N/A in the Table. We ranked
the percentage values (% SBF) to find the top five smell types that are rela-
tively more bug-prone indicated by the underlined percentage values in Table
4. Based on the summary, we observe that the smell types Hard Coding Li-
braries (100.0%, 2/2), Memory Management Mismatch (100.0%, 5/5), Unused
Parameters (87.5%, 7/8), Not Handling Exceptions (85.71%, 6/7), and Local
References Abuse (83.33%,5/6) are more bug-prone compared to other types
of smells. Our results show that different types of multi-language smells have
different impacts on bug-proneness.

To observe the comparative hazard ratios of individual types of smells in
the studied systems, we also assign ranks to the smell types based on the cor-
responding values for hazard ratios. The smell type with the highest value for
hazard ratio is assigned rank 1, the next is assigned rank 2, and so on. We
do not include the covariate of controls (i.e., LOC and N.Previous-Bugs) and
rank only the smells. For each system, we consider only the smells with sta-
tistically significant p-values for the Cox model (as underlined in Table 5 and
Table 6) for the ranking. Thus, the ranking focuses only on the covariates with
statistically significant relationships with bug occurrence, the event of interest.
From the ranking we observe that smell types Local References Abuse, Unused
Parameters, Memory Management Mismatch, Not Handling Exceptions, As-
suming Safe Return Value, and Unused Method Declaration frequently appear
in the top 5 smell types posing higher risk of bugs. This also generally agrees
with the result based on the percentage of systems with hazard ratios greater
than 1 for the individual smell types. We also observe that smell types Exces-
sive Inter-language Communication, Not Securing Libraries, Unused Method
Implementation, Too Much Clustering and Not Using Relative Path sometimes
appear in the top 5 smells with higher risk of bugs.

Also, the covariates ‘N.Previous-Bugs’ and ‘LOC’ are in some systems sig-
nificantly related to occurrences of bugs similar to what was reported in pre-
vious studies [28,66]. However, their hazard ratios are less than that of many
of the studied multi-language smells. Thus, we believe that monitoring the
file size and number of previous bugs may not be enough to effectively track
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the bug-proneness of multi-language files. Hence, we recommend to consider
prioritizing files containing the studied multi-language design smells during
maintenance activities for quality assurance.

4.3 RQ3: What are the categories of bugs that exist in
multi-language smelly files?

To gain better insights into the impacts of multi-language smells on software
bug-proneness, we collected the bug-fixing commits and performed a quali-
tative analysis using both manual analysis and automated topic modeling to
extract the categories of bugs related to multi-language smells. Developers of-
ten leave important information in commit logs while fixing software bugs.
Such information may include an indication of the root cause of the bug and
how it affects the software functionality.

As explained in Section 3.3.2, our topic modeling resulted in 20 topics. We
then performed a manual analysis and provided tags for each topic that de-
scribe the types of bugs. Each topic refers to a type of bug. We then grouped
them into some top-level bug categories based on the bug similarity perceived
from the bug-fixing commit messages. We extend the bug categorization pro-
posed by Ray et al. [63] to include bugs related to multi-language smelly files.
Table 8 presents the types of bugs extracted from the analysis of commit mes-
sages and the corresponding percentage regarding the total number of bugs
in all the studied systems. In this table, the column Bug Topics provides the
type of bugs resulting from the combination of the manual and automatic ap-
proach presented in Section 3.3.2, while the column Categories illustrates the
top-level bug categories that we assigned to group Bug Topics based on the
similarity in characteristics of the bugs perceived from the bug-fixing commit
messages.

Table 7: Distribution of the Categories of Bugs

Bug Categories Percentage
Programming Errors 40.42%
Libraries and Features Support 20.61%
Memory 9.31%
Communication and Network 7.97%
Concurrency 6.98%
DataBase 6.39%
Platform and Dependencies 5.05%
Performance 3.27%

The assigned topics names and categories is inspired from the categoriza-
tion proposed by Ray et al. [63] and also driven from rationale of the bug-
fixing commit messages and the keywords. For example for Memory issues,
the frequently co-occurring keywords represent activities and concepts related
to memory management, such as memory table operations, compaction, size
considerations, write and read operations, etc. For the performance issues, the
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reported keywords capture aspects related to speed, improvement, and gen-
eral performance-related issues. For Concurrency, these keywords highlight
elements related synchronization techniques, and thread-related concepts. For
Libraries and Features Support, these keywords cover terms associated with
updating, adding features, and making library calls.

Similar to previous work [33,63], we found that programming errors is
the largest category of bugs related to multi-language smelly files (40.42%)
as shown in Table 7. Such proportion is not surprising because this category
covers generic programming errors. The highest proportion of bugs in the pro-
gramming errors category is related to program compatibility (15.48%). As
multi-language development involves programming languages with different
lexical, semantic, and syntactic rules, developers should be cautious when de-
veloping such systems to avoid program incompatibility issues. From analyzing
the commit messages, we noticed that such incompatibilities regroup some of
the smells discussed in this paper e.g., Not Handling Exceptions and Memory
Management Mismatch (example of bug-fixing commit message from Rocksdb:
“Fixed various memory leaks and Java 8 JNI Compatibility WARNING in
native method: JNI call made without checking exceptions when
required to from CallObjectMethod”). Indeed, JNI code requires additional
checks and type conversions to correctly define interface between the Java and
C/C++ code. Violations of fundamental rules to connect JNI code may lead
to bugs.

Libraries and features support (20.61%) is the second largest category of
bugs extracted from our dataset. This category comprises the usage of third
party libraries and the missing dependencies (example of bug-fixing commit
message from Conscrypt : “add missing libraries to JNI lib Conscrypt:
fixing Android.mk dependencies Initial empty”). The integration of third
party libraries presents one of the dominant bug topics included in the ex-
ternal libraries category (9.8%). Reuse of existing components and libraries
are among the most important benefits of multi-language development. Pro-
gramming languages do not necessarily use the same syntax and semantics.
Therefore, it is the developers’ responsibility to deal with the different pro-
gramming languages’ calling conventions to avoid diverse issues that can affect
software quality. Our results also point to one of the most discussed JNI is-
sues in the literature, the memory bugs (9.31%) [72,73]. Such type of bugs are
obvious as programming languages with unmanaged memory type allocations
are known for bugs related to memory management [33]. In JNI development,
when converting types or passing an object from Java to C code, the memory is
allocated and should be freed after usage. Thus, forgetting to release the mem-
ory could introduce memory leaks and bugs. The following commit message
related to this category was extracted from Rocksdb: “fix memory leak in
two_level_iterator Summary: this PR fixes a few failed contbuild:
1. ASAN memory leak in Block::NewIterator”.

Our results also report bugs related to communication and network with
a distribution of 7.97% among our dataset. This result could be explained by
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the integration of the JNI development in network operations in some of the
studied projects (e.g., Conscrypt, Frostwire and OpenDDS ). 13

Our results also report the bug category platform and dependencies cover-
ing 5.05% of bugs. Indeed, using JNI the project loses the platform portability
offered by Java code. Therefore, the code should be adapted and compiled to
correctly run on different platforms.14 (“Fix Windows environment issues,
mac and our dev server has totally different definition of uint64_t,
therefore fixing the warning in mac has actually made code in linux
uncompileable”) is an example extracted from Conscrypt related to fixing
bugs related to the category platform and dependencies.

4.4 RQ4: What are the dominant categories of bugs related to each
type of multi-language smell?

To complement the results of the previous research question (RQ3) and to
better understand the relationships between the types of bugs and the studied
multi-language design smells, we extract the types of smells related to each
bug category and study the occurrences and distribution of individual types of
multi-language design smells. Note that the categorization of smells and bugs
was done by investigating the distribution of smells existing in each file that
was reported to be buggy and that was assigned to a category. Thus, design
smells could be part of more than one category.

Table 9 shows the distribution of the studied different types of multi-
language smells among the categories of bugs. From these results, we observe
that the distribution of multi-language design smells differs from one category
to the other. The design smells Unused Method Declaration, Excessive Inter-
language Communication, Unused Parameters, Not Handling Exceptions are
the most dominant types of smells among the bug categories.

The design smell Excessive Inter-language Communication occurs with an
average proportion of 18.82% of all the categories of bugs. This could be ex-
plained by the nature of the smell. Indeed, having excessive communication
between code written in different components could increase code maintenance
activities and thus the risk of bugs. This smell seems to be highly related to
performance issues (43.5%). The design smell Excessive Inter-language Com-
munication is also frequently occurring in the category of libraries and features
support (28.02%), closely followed by the category of memory bugs (23.61%).
This design smell also frequently occurs in the category of bugs related to
general programming errors (19.4%) and errors related to the platform and
dependencies (19.05%).

13 https://www.ibm.com/developerworks/library/j-transparentaccel/index.html
14 https://medium.com/swlh/introduction-to-java-native\
\-interface-establishing-a-bridge-between-java-and-c-c-1cc16d95426a
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Table 8: Categories of Bugs and their Distribution in the Dataset

No Bug Topics %Per Example of Keywords Categories
0 Memory Issues 5.65% memtable, compaction, size, write, flush, datum, set, range, read, trigger. Memory
1 Performance Issues 3.27% speed, improve, performance, issues, change, time, execution, work, copy. Performance
2 Synchronization Issues 4.8% key, asynchronous, error, synchronized, signature, thrpt_op, mu-

tex_thrpt.
Concurrency

3 Deployment and Environment 5.05% test_plan, windows, run, fail, make, timeout, 32-bit, deployed, patch. Platform and Dependencies
4 Support and Features Updates 3.4% update, change, feature, add, pass, lib, call, load, reference, format. Libraries and Features Support
5 Threads and multi-threading 2.17% lock, run, Optimistic, thread, error, write, mutex, pass, access, local. Concurrency
6 Data Schema and Types 7.59% schema, type, int, object, field, class, default_value, method, pointer,load. Programming Errors
7 Network Session Handling 3.59% call, session, nativecrypto, server, cipher_suite, certificate, client, socket. Communication and Network
8 Distributed Database Storage 6.39% table, closes_differential, access, key, db, iterator, delete, change. Database
9 Native Libraries and Platform 4.53% call, native, failure, external, error, include, load, crash, library, platform. Libraries and Features Support
10 Communication Protocol 3.59% file, I/O, user, FIFO, time, input, operation, protocol, revision. Communication and Network
11 Compiler and Build 4.71% fail, error, fix, warning, build, make, include, hash, compiles_reviewer. Programming Errors
12 Data Load and Allocation 3.66% memory, size, fragments, allocate, create, malloc, cleanup, instance, load. Memory
13 Breaking Updates 5.83% support, fix, break, breaking_update, error, add, rename ,library, update. Programming Errors
14 Missing Dependencies 2.88% dependencies, libraries, merge, support, missing, JNI, bit, ad, empty. Libraries and Features Support
15 Network Security 0.79% synchronization, openssl, java_injecte, nativecrypto, native, sslparame-

ter.
Communication and Network

16 User Interface 1.46% context_menu, layout, android, cleanup, update_translation, tab, rota-
tion

Programming Errors

17 Programming and Semantics 5.57% fix, wrong, code, debug, issue, change, cleanup, exception, type, incorrect. Programming Errors
18 Third Party Libraries 9.8% android, libraries, issue, external, play, load, media, show, network, music. Libraries and Features Support
19 Program Compatibility 15.48% issue, incorrect, warning_native, JNI, Compatibility, checking_exception. Programming Errors
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Similarly, the design smells Unused Parameters and Unused Method Dec-
laration occur respectively with the average proportion of 18.46% and 16.59%
in all the categories of bugs. The design smells Not Handling Exceptions, Too
Much Scattering, and Too Much Clustering also occur frequently with average
proportion of 10.17%, 8.11%, 6.95%, respectively. We assigned N/A for the
design smells Excessive Objects and Not Caching Objects because we did not
find occurrences of these smells in our dataset. The 0% means that we did not
find occurrences of that specific smell in that bug category. 35.9% of the buggy
files with occurrences of the smell Unused Parameters are related to the cate-
gory of platform and dependencies, and 24.07% are related to communication
and network issues.

From our analysis, we did not find any occurrences of the design smell
Excessive Inter-language Communication in multi-language smelly files con-
taining bugs related to database issues. 23.68% of the files with occurrence of
the design smell Unused Method Declaration that experienced a bug are related
to database issues, closely followed by concurrency bugs with proportions of
22.52% and 22.49%, respectively. 26.92% of the buggy files with occurrences
of the design smell Too Much Scattering experience bugs related to concur-
rency, 10% of the buggy files with occurrences of the design smell Too Much
Scattering experience bugs related to libraries and features support.

As in Table 9, 22.49% of smells related to programming errors are of type
smell Unused Method Declaration closely followed by Excessive Inter-language
Communication (19.40%), and Unused Parameters (16.45%). For the category
libraries and features support, Excessive Inter-language Communication fre-
quently occurs (28.03%). The design smells Excessive Inter-language Com-
munication, Memory Management Mismatch, Local References Abuse are the
most dominating smells related to memory issues with respective proportion
of 23.61%, 21.59%, and 20.56%. In fact, Memory Management Mismatch and
Local References Abuse are related to the allocation and release of memory.
The design smell Excessive Inter-language Communication, results in extra
calls between the host and foreign language which will induce the allocation of
memory to each object that is passed from one language to the other. Thus,
not releasing the memory and increasing the inter-language communications
could lead to memory issues.

Listing 6 presents an example of bug-fixing commit in a smelly file ex-
tracted from Rocksdb (options.cc) presented in Section 2, Listing 1.15 The ‘+’
signs in this code example show the lines that were added during the bug-fixing
commit, while the ‘-’ sign shows the line that was deleted. This bug-fixing
commit was assigned to the bug category memory issues based on the bug-fix
commit message “Fixed various memory leaks and Java 8 JNI Compatibility”.
In this example code snippet, we see that the memory leak was the result
of using GetIntArrayElements to access a Java array without releasing the
memory after using ReleaseIntArrayElements (design smell Memory Man-
agement Mismatch). As we discussed in Section 2, JNI treats Java objects and

15 https://github.com/facebook/rocksdb/commit/c6d464a9da7291e776b5a017f0a5d33d61f2518b
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Listing 6: Example of Bug-fixing Commit in Smelly Method
/∗ C ∗/
void Java_org_rocksdb_Options_setMaxBytesForLevelMultiplierAdditional(

jintArray jmax_bytes_for_level_multiplier_additional) {
jsize len = env−>GetArrayLength(jmax_bytes_for_level_multiplier_additional);
jint ∗additionals =
− env−>GetIntArrayElements(jmax_bytes_for_level_multiplier_additional, 0);
+ env−>GetIntArrayElements(jmax_bytes_for_level_multiplier_additional, nullptr);
+ if(additionals == nullptr) {
+ // exception thrown: OutOfMemoryError
+ return;
+}
+
auto∗ opt = reinterpret_cast<rocksdb::Options∗>(jhandle);
opt−>max_bytes_for_level_multiplier_additional.clear();
for ( jsize i = 0; i < len; i++) {

opt−>max_bytes_for_level_multiplier_additional.push_back
(static_cast<int32_t>(additionals[i]));

}
+ (env−>ReleaseIntArrayElements(jmax_bytes_for_level_multiplier_additional,
+ additionals , JNI_ABORT);

classes as reference types because of the type incompatibility between Java
and C/C++. To access such reference types, JNI offers predefined methods.
Those methods allocate memory to each element that is accessed. Therefore,
in such cases developers should release the memory after usage. If the mem-
ory usage of those types is not managed correctly, allocating memory for new
reference objects may fail [3,73]. Occurrences of this design smell may also
lead to memory leaks as presented in Listing 6. Thus, we believe that develop-
ers should be cautious about files with multi-language design smells, especially
Unused Method Declaration, Excessive Inter-language Communication, Unused
Parameters, Not Handling Exceptions, Memory Management Mismatch and
Local References Abuse because they are more prone to different types of bugs
and may incur additional maintenance efforts.

5 Discussion and Implications

This section discusses the results reported in Section 4.

5.1 Survival of Files with Multi-language Smells from Bugs:

From our results presented for RQ1, we observe that multi-language smells
have a negative impact on the time to bug occurrences in smelly files. In seven
out of the eight studied systems, bugs in multi-language smelly files occur faster
than in files without those smells. In fact, our results show that the survival
probability of files with occurrences of multi-language design smells is lower
than the survival of files without multi-language design smells. Therefore, the
studied design smells seem to negatively impact the software bug-proneness.
This impact is similar to the impacts of mono-language design smells that have
been widely studied in the literature and were reported to negatively impact
systems by making classes more change-prone and bug-prone [30,66].
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Table 9: Distribution of Multi-language Design Smells Among the Bug Categories

Bug Categories↓/Smells→ UP UM TMS TMC UMI ASR EO EILC NHE NCO NSL HCD NURP MMM LRA

Programming Errors 16.45% 22.49% 5.70% 8.97% 1.78% 1.92% N/A 19.40% 7.37% N/A 0.86% 1.90% 3.42% 6.62% 3.14%

Libraries and Features Support 17.19% 18.21% 10.93% 10.86% 1.91% 0.037% N/A 28.02% 0.87% N/A 1.97% 5.47% 1.046% 2.93% 0.56%

Memory 12.84% 10.55% 4.75% 2.59% 0.031% 1.56% 0% 23.61% 1.56% N/A 0% 0% 0% 21.95% 20.56%

Platform and Dependencies 35.90% 13.92% 1.83% 2.56% 3.27% 0.37% N/A 19.05% 0.73% N/A 1.10% 7.69% 3.30% 4.03% 6.237%

Communication and Network 24.07% 13.75% 5.25% 7.15% 0.75% 7.70% N/A 11.39% 15.69% N/A 0% 0.37% 0% 6.94% 6.97%

Concurrency 21.52% 22.52% 26.92% 4.49% 0% 3.15% N/A 5.63% 4.17% N/A 0% 0% 0% 2.5% 9.10%

DataBase 13.16% 23.68% 0% 18.42% 0% 10.53% N/A 0% 34.21% N/A 0% 0% 0% 0% 0%

Performance 6.56% 7.63% 9.50% 0.53% 0% 0.13% N/A 43.50% 16.73% N/A 0.67% 0% 0.67% 8.97% 5.087%

Average 18.46% 16.59% 8.11% 6.95% 0.97% 3.17% N/A 18.82% 10.17% N/A 0.58% 1.92% 1.05% 6.74% 6.45%

Acronyms: Up: UnusedParameter, UM: UnusedMethodDeclaration, TMS: ToomuchScattering, TMC: Toomuchclustring

UMI: UnusedMethodImplementation , ASR: AssumingSafeReturnValue, EO: ExcessiveObjects EILC:excessiveInterlangCommunication

NHE: NotHandlingExceptions,NCO: NotCachingObjects, NSL: NotSecuringLibraries,HCD: HardCodingLibraries

NURP: NotUsingRelativePath, MMM: MemoryManagementMismatch, LRA: LocalReferencesAbuse
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Existing studies investigated other types of smells that do not consider the
combination and interaction of programming languages [15,32,44,55,56,57,
58,60,69,79,80]. Therefore, we believe that reporting the results of the impact
of multi-language design smells is complementary to existing work and essen-
tial and beneficial to assess the effectiveness and benefits of multi-language
systems. Since multi-language systems are more complex and introduce addi-
tional challenges, such design smells are expected to increase the maintenance
overhead and the risk of bugs related to these systems.

Results of RQ2 show that some specific types of smells are more related
to bugs than others. The design smell Not Handling Exceptions is found to
have a higher impact on bug-proneness (higher hazard ratio) compared to
other types of multi-language design smells. The exception handling is par-
ticularly helpful to identify and report errors occurring in the code. Although
exception handling is quite simple in Java, it gets trickier when combining
Java with the native code. The key reason is that the handling of exceptions
differs depending on the programming language. In the native code, the ex-
ception handling remains pending until the control returns back to the Java
code. Thus, developers should be cautious when handling the native excep-
tion, e.g., example of bug-fixing commit from realm “Fix helper class for
throwing java exception from JNI”). The same goes for Assuming Safe
Return Value which should be used to make sure that the program was cor-
rectly executed. When an exception is thrown in Java, the control directly seeks
for an immediate catch block to properly handle the exception. However, the
scenario is quietly different from the native code. When an exception is thrown
in the native code, answering such an exception is postponed until the control
returns back to Java code. Therefore, when using JNI, developers should write
their own code for implementing the correct control flow for checking return
values and handling and clearing exceptions to ensure the correctness of the
program.

Moreover, our results show that the design smells Local References Abuse and
Memory Management Mismatch also have a negative impact on the time to
bug occurrence. These two smells point out issues related to the allocation and
release of memory. Java objects are handled by the native code as reference
types (e.g., String, Class, Object), and predefined methods are used to access
fields and methods. Such methods allocate memory that should be released
after usage to avoid memory and security issues. Similarly, all native methods
that return a Java object create local references in the reference table. The
number of local references is limited and exceeding that number will lead to
memory leaks.

We believe that developers should be cautious when dealing with files con-
taining the studied design smells because such files seem to have a lower sur-
vival probability before the occurrence of a bug. In fact, smelly files are more
likely to be subject to bugs and may incur additional maintenance efforts.
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5.2 Categories of Bugs occurring in Multi-language Smelly Files

As multi-language development involves combining programming languages
with different semantics and lexical rules, this can often complicate code com-
prehension, and negatively impact maintenance, because of bugs occurrences.
Although all the bug topics and categories presented in this paper are im-
portant. Our results in RQ3 show that programming errors, libraries and
features support, memory are the most dominating categories of bugs related
to multi-language smelly files. Thus, we recommend that researchers and de-
velopers pay more attention to all the types of bugs discussed in this paper,
especially the bugs related to programming errors, libraries and features sup-
port, and memory. Previous studies that investigated the types of bugs in
multi-language systems also reported that programming errors and memory
issues are among the most common types of bugs [33,63]. The heterogeneity
of components in multi-language systems could lead to programming errors.
In fact, each programming language has its own rules (i.e., semantic, lex-
ical, and syntactical), thus, generic programming errors could easily occur.
This category of bugs includes program rules compatibility issues, such as
the differences between the Java and native code regarding the management
of exception, native return types, etc. It also includes the bug type break-
ing changes i.e., code changes in one part of the software system that may
potentially cause related components to fail either at compile-time or run-
time.16 Indeed, tracking code dependencies across components written in dif-
ferent programming languages could be a challenging task (e.g., from rocksdb
“Breaking updates Conflicts: .JNI-h-file-generation.launch”). Our
results also highlight bugs related to libraries and features support. This cat-
egory includes the integration of existing libraries for reuse, which is one of
the main expected benefits of multi-language development. Several articles
and developers’ blogs discussed issues related to the integration of external li-
braries into JNI as well as their dependencies (e.g., bug-fixing commit message
from conscrypt “add missing libraries to JNI lib Conscrypt: fixing
Android.mk dependencies Initial empty”).17
Therefore, developers should use external libraries with caution and manage
all the related dependencies carefully, to take advantage of the reuse of code.

We reported in RQ4 that almost all the types of the studied design smells
are quite distributed among all the bug categories. From our results we found
that the design smell Excessive Inter-language Communication is the most
frequently occurring smell type in all the bug categories with an average value
of 18.82%. Multi-language systems are complex by nature and having exces-
sive communication between components written in different programming
languages may increase the complexity related to such systems and conse-
quently may results in different types of bugs. The design smells Excessive
Inter-language Communication frequently occurs in files that experienced
16 https://codingforsmarties.wordpress.com/2017/04/02/breaking-changes/
17 https://www.databasedevelop.com/article/12233882/How+to+resolve+dll+
dependency+with+external+library.
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bugs related to performance. This could be explained by the extra overhead
that could result from the excessive calls between the Java and the native code
that define the nature of this design smell type. In fact, context switching from
the Java environment to the native code may be time consuming18. The de-
sign smell Excessive Inter-language Communication also occurs frequently in
files that experienced bugs related to memory. Such bugs could be related to
the fact that passing Java objects to native code requires the call to some
predefined methods to access and manipulate the data. Such methods allocate
memory that should be released after usage. Indeed, the JNI creates references
for all Java object arguments passed in to native methods, as well as all objects
returned from JNI functions. Therefore, excessive calls between the Java and
native code may lead to memory issues if not handled correctly. Design smells
related to unused code i.e., Unused Parameters and Unused Method Decla-
ration are also highly distributed among all the bug categories presented in
this paper with average values of 18.46% and 16.59% respectively. This could
be due to challenges introduced by the design smells Unused Parameters and
Unused Method Declarationdue to the unused code. These smell types even if
not directly related to bugs, could increase the maintenance effort and impact
the code comprehension and maintainability, which may lead to the occur-
rences of bugs. Our results also highlight that the design smell Not Handling
Exceptions is the most frequently occurring smell type in all the bug categories
except the bugs related to database issues. This type of design smells was pre-
viously reported as related to bugs [5,38,72]. A bug related to this smell type
was also reported in Conscrypt : “Fixed various memory leaks and Java 8
JNI Compatibility WARNING in native method: JNI call made without
checking exceptions when required to from CallObjectMethod”). Devel-
opers were not checking for Java exceptions after calling JNI methods. As
explained in Section 2, the management of exceptions is not automatically
handled in all the programming languages. Indeed, unlike for the Java code,
the native code does not support the automatic exception handling. Therefore,
developers that do not have enough knowledge about the exception handling
mechanism in the JNI context could introduce bugs and other maintenance
challenges.

From our results we also observed that some of the smell types with a
higher risk of the introduction of bugs are also associated with bug categories
with a higher proportions of bugs. Our results in RQ3 show that bugs related
to programming errors, libraries and features support, and memory are the
most dominating categories of bugs related to multi-language smelly files. In
RQ4, we found that the design smells Unused Method Declaration, Excessive
Inter-language Communication, and Unused Parameters are the most domi-
nant types of smells that exist in the bug category programming errors and
libraries and features support. While, the most dominant types of smells in the
bug category memory are Excessive Inter-language Communication, Memory
Management Mismatch, and Local References Abuse. From RQ2, we report

18 https://www.tutorialfor.com/blog-219186.htm
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that these design smells are among the smell types posing higher risk of bugs
considering the time to bug occurrence. Therefore, we believe that developers
should be concerned about these types of design smells. Indeed, files with these
types of design smells seem to not only have a low survival probability before
the introduction of a bug, but they also appear to be among the most frequent
types of smells in the most dominant bug categories.

5.3 Comparative Insights Regarding Previous Findings

In a previous work [5], our results show that some types of design smells are
more related with bugs than others: Unused Parameters, Too Much Cluster-
ing, Too Much Scattering, Hard Coding Libraries, Not Handling Exceptions,
Memory Management Mismatch, and Not Securing Libraries. However, in that
study, we studied the correlation between individual smell types and the intro-
duction of bugs. In this study, we considered another perspective of analysis
(i.e., survival analysis) and studied how long smelly files survive before the
occurrence of the event of interest (i.e., bug occurrence in our case). Therefore,
our results emphasize on the timeline and risk level of the bugs.

From the correlation analysis of multi-language design smell types and in-
troduction of bugs we found that Unused Parameters, Too Much Clustering,
Too Much Scattering, Hard Coding Libraries, Not Handling Exceptions, and
Memory Management Mismatch, and Not Securing Libraries design smells
are observed to be more related to faults compared to other smells. From
the survival analysis of smelly files until the introduction of a bug we found
that files with design smell types Not Handling Exceptions, Local References
Abuse, Memory Management Mismatch, Assuming Safe Return Value, Unused
Parameters, and Unused Method Declaration lead to bugs faster compared to
files without those types of smells. The design smell types Not Securing Li-
braries, Unused Method Implementation, Excessive Inter-language Communi-
cation, Too Much Clustering and Not Using Relative Path were also in some
cases appearing in the top 5 smells with higher risk of bugs. From these
results we can conclude that the following types of design smells are
not only highly correlated with the introduction of bugs, but also
that files containing them are more likely to experience bugs faster
than files without them: i.e., Unused Parameters, Not Handling Ex-
ceptions, Memory Management Mismatch, Too Much Clustering,
and Not Securing Libraries. The Unused Parameters and Unused Method
Declaration design smells are related to unused parameters and classes with
excessive number of unused native methods declaration respectively. Thus, the
impacts of the unnecessary code resulting from these two smells could affect
code maintainability and the comprehension of JNI systems, which may lead
to the introduction of more bugs within a short period of time. Similarly,
several articles and developers’ blogs discussed bugs related to mishandling
JNI exceptions and the management of the memory [3,73,72]. Therefore, it is
not surprising to observe that the design smells Not Handling Exceptions and
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Memory Management Mismatch lead to bugs earlier compared to other types
of design smells.

The design smell Not Securing Libraries was reported to be correlated
with the introduction of bugs. This smell type also appears in the top five
smells with higher risk of bugs. While files with occurrences of design smells
Local References Abuse, Unused Method Implementation and Assuming Safe
Return Value were not perceived to be highly correlated with bug occurrences
as we reported in our previous study [5]. In this study, we observe that files
with these smell types experience bugs faster compared to some other types
of smells that were found to be more correlated to bugs in our previous study
[5].

5.4 Implication of the Findings

From our results, we highlight the implications of our findings and formu-
late some recommendations that could help the researchers, the developers,
the academia, and also anyone involved in the development of multi-language
systems.

Our main objective in this paper was to investigate the survival proba-
bility of files with and without multi-language design smells to evaluate the
impacts of those smells on the bug-proneness. Our results show that files with
multi-language design smells experience bugs faster than files without those
smells, and that some specific types of design smells are more bug-prone com-
pared to other design smell types. Therefore, we believe that developers should
pay attention to files containing multi-language design smells. Also, our iden-
tified categories of bugs in multi-language systems could help developers set
maintenance priorities for those smells. For example, our results show that the
general programming errors present the most dominant category of bugs, and
that design smells Unused Method Declaration, and Excessive Inter-language
Communication are the most frequently occurring design smells related to
that category of bugs. Therefore, prioritizing these types of design smells for
refactoring could reduce possible bugs and consequently improve the quality
of multi-language systems.

To Researchers- More research is needed to define design patterns and de-
sign smells for multi-language systems. More research should also be conducted
to empirically investigate the impact of patterns and design smells on the qual-
ity of multi-language systems. Design smells in mono-language systems have
been widely studied in the literature and have been found to impact program
comprehension [1] and increase the risk of bugs [66]. However, the impact of
multi-language smells on software quality is still under-investigated. Our find-
ings suggest that files with multi-language smells experience bugs faster than
files without those smells. Thus, to help improve the quality of multi-language
systems, we encourage researchers to deeply study such systems, analyze de-
sign patterns and design smells, and empirically evaluate their impacts on
software quality. As we observed that multi-language design smells are related
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to bugs and they contribute to accelerate the introduction of bugs. Therefore,
researchers could also explore the causes and circumstances under which the
studied smells may increase the risk of bugs. They could also investigate the
roots causes and recommended mitigation strategies related to the categories
of bugs that could result from the occurrences of multi-language design smells.

To Developers- As our results show that multi-language design smells are
related to bugs, developers should consider removing such smells. Studying
each type of smell separately also allowed us to capture their impacts in-
dividually. The insights from this study could help developers to prioritize
multi-language design smells for maintenance and refactoring activities. We
believe that the smell types Not Handling Exceptions, Local References Abuse,
Memory Management Mismatch, Assuming Safe Return Value, Unused Pa-
rameters, and Unused Method Declaration should be considered in priority.
The same goes for the categories of bugs. The developers could benefit from
our results by considering the categories of bugs that are highly impacted
by multi-language design smells to consider them in priority for refactoring.
Developers should also take into account the types, frequency, and severity
of bugs associated with (each category of) smells when prioritizing them for
refactoring or other maintenance activities.

To Academia- The multi-language development has brought several advan-
tages to software engineering. However, to better benefit from multi-language
development, formal guidelines should be considered. Since our results high-
light the importance and impacts of multi-language design smells on software
bug-proneness, we believe that providing courses discussing the multi-language
systems could help to support the quality of multi-language systems. The aca-
demicians can also explore example case studies to focus on the good and bad
practices to adopt that could help to improve the quality of multi-language
systems.

6 Threats To Validity

In this section, we discuss potential threats to the validity of our study follow-
ing guidelines for empirical studies [82].

Threats to construct validity concern the relation between the theory and
the observation. We relied on the smell detection approach proposed in a
previous study [5]. The approach was reported to have a minimum precision
and recall of 88% and 74%, respectively. We relied on the SZZ algorithm to
identify bug-inducing commits. The heuristics used in SZZ may not be 100%
accurate. However, it has been successfully used in multiple studies investigat-
ing design smells [28,51,66]. The heuristics for finding bug-fix commits using
keywords may also introduce false positives. We mitigated this threat by us-
ing keywords that were reported to be associated with bug-fixing commits [8,
49]. This method may not capture all the commits related to bug-fixing if the
commit messages were not containing any of those keywords. Nevertheless,
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Castelluccio et al. [13] reported that this technique can achieve a precision of
87.3% and a recall of 78.2%. Moreover, the method that we used for mining
bug-fixing and bug-inducing commits was evaluated in previous studies [5,51].
Muse et al. [51] manually validated the bug-inducing commits obtained by ap-
plying SZZ and found them to be highly accurate; they randomly selected 50
commits from the reported results and found only three false positives (6%).
In this study, we have also manually inspected the changes in all the bug-
inducing commits reported for Pljava and found the precision of our detection
of bug-inducing commits to be 70.83%. When analyzing the smelliness of files
that experienced bugs, we considered the whole file as participating in the
design smell. Hence, the design smell present in the file could be in different
code lines than the bug. A possible threat is related to the manual labeling
of bug topics. We are aware that in some cases, developers might not have
provided in the commit messages all the details related to the bug or might
have used some abbreviations. Therefore, the retrieved bug topics may not be
100% accurate. We reduced the threat related to the manual labeling of bug
topics by relying on both keywords and selected commit messages and com-
bining both manual and automatic approaches. Moreover, such methods have
been applied in previous studies [27,78]. The list of bug topics may not be
exhaustive and might not reflect all the bugs related to multi-language smelly
files. However, we are reporting our observations on possible bug topics that
could be related to smelly files. Further investigation with a larger data set
could lead to an exhaustive list of multi-language bug topics.

Threats to internal validity. We do not claim causation rather we report
observations and explain our findings. Our investigation is an internal vali-
dation of previously defined and cataloged multi-language design smells [3,
4]. Therefore, the subset of multi-language design smells that we are consid-
ering may present a threat to validity. However, to mitigate this threat, we
published our catalog in a pattern conference. The paper underwent multi-
ple rounds of a shepherding process, where an expert in patterns and smells
provided three rounds of meaningful comments to refine and enhance the pat-
terns. Subsequently, the catalog went through a writers’ workshop process.
Five researchers from the pattern community had two weeks before the writ-
ers’ session to meticulously review the paper and provide detailed comments
for each defined smell. The catalog was extensively discussed during three ses-
sions, each lasting two hours. These sessions involved a thorough examination
of each smell, including their definition and concrete examples. Furthermore,
the results of this study and our previous work indicate that the studied smells
are related to bugs. From the commit messages, we also found that some smells
were explicitly discussed by developers who contributed to the smelly files.
For example, a developer reported issues related to the smell Not Handling
Exceptions in Conscrypt : “JNI call made without checking exceptions
when required to from CallObjectMethod”).
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Threats to conclusion validity concern the relationship between the treat-
ment and the outcome. In this study, we were careful to acknowledge the
assumptions of each statistical test that we used.

Threats to external validity address the possibility to generalize the re-
sults. We limited the scope of this study to open-source projects. However, the
subject systems represent different domains and project sizes. We studied a
particular subset of multi-language design smells (JNI). Thus, further valida-
tion with other sets of languages would give more opportunities to generalize
the results. We studied a particular subset of multi-language design smells.
Future works should consider analyzing other sets of multi-language design
smells.

Threats to reliability validity To mitigate this threat we provide in this
paper all the details needed to fully replicate our study. We used open-source
projects available in GitHub. We made all the scripts and data available online
in our GitHub repository.12

7 Conclusion

In this paper, we examine the impact of multi-language design smells on soft-
ware bug-proneness. We detected 15 types of multi-language smells from eight
open-source projects. We performed a survival analysis and compared the time
until a bug occurred in multi-language files with and without the studied
smells. We performed a topic modeling followed by a manual investigation to
capture the categories and characteristics of bugs in files with multi-language
smells. Our results show that multi-language smelly files experience bugs faster
than files without those smells and that files without multi-language smells
have hazard rates 87.5% lower than files with multi-language smells. Also,
multi-language smells are not equally bug-prone. Developers should consider
giving special attention to files containing Not Handling Exceptions, Local Ref-
erences Abuse, Memory Management Mismatch, Assuming Safe Return Value,
Unused Parameters, and Unused Method Declaration design smells. Program-
ming errors, libraries and features support, and memory issues are the most
dominant types of bugs in multi-language smelly files. The design smells Un-
used Method Declaration, Excessive Inter-language Communication, Unused
Parameters, Not Handling Exceptions are the most dominant types of smells
among the bug categories. Our investigation reports several findings that we
hope will raise practitioners’ awareness about the impacts of different types of
multi-language smells, while helping them prioritize their maintenance tasks.

As part of our future work, we plan to (1) investigate whether the time to
fix a bug occurring in smelly files is higher than the time needed to fix the
bug in non-smelly files, (2) study the co-occurrence of multi-language smells
and traditional smells (that can occur in components written in a single lan-
guage), (3) study other types of FFI and other combinations of programming
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languages, and (4) extract a taxonomy of multi-language bugs along with their
root causes and recommend mitigation strategies.
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