
Noname manuscript No.
(will be inserted by the editor)

Multi-language Design Smells: A Backstage Perspective

Mouna Abidi · Md Saidur Rahman ·
Moses Openja · Foutse Khomh

the date of receipt and acceptance should be inserted later

Abstract Multi-language systems became prevalent with technological ad-
vances. Developers opt for the combination of programming languages to build
a single application. Such combinations of programming languages allow the
reuse of existing code and libraries without re-implementing the code from
scratch. Software quality is achieved by following good software development
practices and avoiding the bad ones. However, most of the practices in the
literature apply to mono-language systems only and do not consider the in-
teraction between programming languages. We previously defined a catalog
of bad practices i.e., design smells related to multi-language systems. This
paper aims to provide empirical evidence on the relevance of multi-language
design smells and their perceived impacts on software quality. We analysed
eight open source projects to detect occurrences of 15 types of multi-language
design smells. We also extracted information about the developers that con-
tributed to those systems. We performed an open and a closed survey targeting
developers in general but also developers who contributed to those systems.
We surveyed developers about the perceived prevalence of multi-language de-
sign smells their severity, and their impact on software quality attributes.
We report that most of the studied design smells are perceived as design or

Mouna Abidi
DGIGL, Polytechnique Montreal
E-mail: mouna.abidi@polymtl.ca

Md Saidur Rahman
DGIGL, Polytechnique Montreal
E-mail: saidur.rahman@polymtl.caa

Moses Openja
DGIGL, Polytechnique Montreal
E-mail: moses.openja@polymtl.ca

Foutse Khomh
DGIGL, Polytechnique Montreal
E-mail: foutse.khomh@polymtl.ca



2 Abidi et al.

implementation problems. Our results suggest that the studied design smells
could be introduced mainly during refactoring and maintenance activities, and
during regular development tasks. Our results also point that multi-language
design smells are perceived as harmful and have negative impacts on software
quality. The perceived prevalence of design smells and their impact varies
from one specific smell type to the others. We believe that our findings are
important for developers and researchers interested in improving the quality
of multi-language systems as it can help them prioritize design smells during
maintenance activities.

Keywords Survey, Multi-language systems, Design smells, JNI

1 Introduction

Design smells reflect symptoms of poor design and implementation choices
that may potentially have negative impacts on software quality. Such poor
design choices may lead to a variety of maintenance challenges and issues,
including the increase of maintenance activities and the introduction of bugs
[60,59,22,50,21,49,52]. While a design smell may not definitively identify an
error, its presence suggests a potential trouble spot, a place where there is an
increased risk of future bugs or potential failures. In the last decade, empirical
studies reported that design smells hinder software comprehensibility and may
increase bug and change-proneness [21,50]. However, existing studies on design
smells primarily focus on mono-language systems and do not consider the
smells related to the interaction between programming languages (i.e., multi-
language design smells).

On the other hand, multi-language systems are gaining popularity. To-
day, a common practice to develop an application is to combine components
written in different programming languages and technologies [29,44,26]. Such
practice allows to gain the benefits from the strengths offered by each pro-
gramming language and to reuse existing code. Several studies in the litera-
ture have investigated challenges related to multi-language systems [26,30,44,
26,16,17,46]. The majority of these studies report that program comprehen-
sion and system’s complexity are the main challenges of the quality assurance
of multi-language systems [44,26,39]. Software quality is partially achieved by
adopting formal guidelines, design patterns, and avoiding design smells [62,23,
24]. However, despite the increasing popularity of multi-language systems, the
literature is still lacking an established set of guidelines, i.e., design patterns
and design smells to follow or avoid when combining different programming
languages in order to maximise their benefits [46,26,4]. The information about
multi-language design patterns, design smells, and practices (e.g., [46,17,55])
is scattered in different resources [40]. Developers and researchers may not
easily access these resources. This diversity of sources of information makes it
difficult for developers to clearly identify which practices to adopt and which
ones to avoid (to benefit from using multiple programming languages). This
diversity also adds additional challenges to the development and maintenance



Multi-language Design Smells: A Backstage Perspective 3

of multi-language systems. Developers working on any part of the system are
required to have experience in multiple programming languages. Moreover,
they should consider the compatibility and rules (i.e., semantic, lexical, and
syntactical) related to each programming language to correctly handle the
inter-language communications.

We previously documented a catalog of 15 multi-language design smells,
i.e., recurrent bad coding or design practices when combining programming
languages [40,42]. These definitions and characteristics of design smells have
been extracted from several sources of information (e.g., developers blogs, lit-
erature, bug reports, and source code) and validated through rounds of shep-
herding process and writers’ workshop of a pattern conference (EuroPlop).
During this validation process, the design smells were discussed along with
their definition and concrete examples with experts on patterns and smells. In
a recent study, we performed an empirical investigation of the impact of the
design smells on software fault-proneness [6]. From our analysis, we found that
design smells are prevalent and that they have a negative impact on the soft-
ware fault-proneness. However, these assertions have never been verified with
professional developers. Therefore, we aim through this paper to complement
our previous work [6], and assess the perception of the defined design smells
from the developers’ perspective. We also aim to investigate developers’ per-
ception of the severity of the multi-language design smells and their impacts
on software quality attributes. Our five key contributions are: (1) empirical
investigation of the developers’ perception about multi-language design smells
in the context of JNI systems, (2) text-based analysis to identify the reasons
behind the introduction of design smells, (3) empirical evaluation of the per-
ceived severity of multi-language design smells, (4) their perceived impact on
software quality attributes, and (5) investigation of the possible refactoring
solutions related to design smells occurrences.

To achieve these objectives, we started by analysing the source code of
open source projects to extract occurrences of multi-language design smells in
the context of JNI systems. We analysed 270 snapshots of eight open source
projects. We also extracted information about the developers who contributed
to the files impacted by the design smells. We then designed two surveys: an
open survey targeting professional software developers and a closed survey
targeting developers who contributed to files containing the studied multi-
language design smells. We use surveys because it is a “system for collecting
information from or about people to describe, compare, or explain their knowl-
edge, attitudes, and behavior” [13]. We believe that surveying developers is the
best method to retrieve developers’ perceptions about multi-language design
smells, since they are the ones who interact daily with these systems and who
suffer from their challenges. More specifically, we surveyed developers about
their perceived prevalence, severity, and impacts of the studied design smells
on software quality attributes. We received a total of 132 responses for the
open survey and 39 responses for the closed survey.

The analysis of surveys responses shows that (1) overall, developers con-
sider the proposed design smells to be reflective of design and implementation



4 Abidi et al.

problems. (2) The main reasons for smells introduction, reported by the partic-
ipants are: refactoring and maintenance, continuous development (i.e., perform
regular development tasks), easy way of implementation, lack of knowledge,
and specific implementation and design choices. (3) The design smells are per-
ceived in general to negatively impact all the studied quality attributes. (4)
The design smells perceived as the most harmful are: Not Handling Exceptions,
Assuming Safe Return Value, Local References Abuse, Memory Management
Mismatch, and Excessive Inter-language Communication. (5) In general, de-
velopers would consider refactoring the design smells from their systems.

The remainder of this paper is organised as follows. Section 2 dis-
cusses the background of multi-language design smells. Section 3 describes the
design of our study in general and survey in particular. Section 4 reports re-
sults of our survey while Section 5 discusses these results and provides some
recommendations. Section 6 summarises threats to the validity of our study.
Section 7 presents related work. Section 8 concludes with future works.

2 Background

In this section, we first introduce a brief background on multi-language sys-
tems. We then discuss different types of multi-language design smells studied
in this paper.

2.1 Multi-language Systems

Modern software systems are moving from the usage of a single programming
language towards the combination of programming languages [35,28,26]. These
systems are referred to as multi-language systems [11], i.e., software systems
that are developed with a combination of components written with at least
two programming languages. The languages may have diverse lexical, seman-
tic, and syntactical programming rules. Most of the systems with which we
interact daily integrate components written in several programming languages
and technologies. Such systems are gaining popularity because of their different
inherent benefits [56,48,45,9,14,19,25,53]. For example, it allows developers
to reuse existing components and external libraries to reduce the development
time and cost [2,55,29]. Developers often leverage the strengths of different
programming languages to cope with the pressure and the challenges of build-
ing complex systems [56,48,45].

2.2 Java Native Interface

While some applications could be developed completely in Java, there are situ-
ations where Java alone cannot offer the desired level of functionality or perfor-
mance (e.g., speed) and meet the needs of the application. In such situations,
developers use Java Native Interface (JNI) by combining Java and native code.
JNI is a foreign function interface programming framework for multi-language
systems. JNI enables developers to invoke native functions from Java code
and also Java methods from native functions [33,20]. We present in Figure 1



Multi-language Design Smells: A Backstage Perspective 5

/* Java */
class HelloWorld {
static {
AccessController.doPrivileged(
new PrivilegedAction<Void>() {
public Void run() {
System.loadLibrary("HelloWorld");
return null; }

} }
private native void print();
public static void

main(String[] args) {
new HelloWorld().print();

}
}

(a) JNI Method Declaration

/* C */
#include <jni.h>
#include <stdio.h>
#include "HelloWorld.h"

JNIEXPORT void JNICALL
Java_HelloWorld_print(JNIEnv

*env, jobject obj)
{

printf("Hello World!\n");
return;

}

(b) JNI Implementation Function

Fig. 1: JNI HelloWorld Example

an example of a JNI code extracted from [33]. Figure 1 (a) presents a Java
class that contains a native method declaration Print() and loads the cor-
responding native library while Figure 1 (b) presents the C file that contains
the implementation of the native function Print(). JNIEXPORT and JNICALL
are the macros needed to link the native method declaration in Java with its
corresponding implementation in C [33].

2.3 Multi-language Design Smells

Multi-language design smells are defined as poor design and implementation
choices when combining different programming languages. They may slow
down the development process of multi-language systems or increase the risk
of bugs or potential failures in the future [3,4]. A few papers in the litera-
ture discussed the design patterns and design smells related to multi-language
systems. An extensive catalog for multi-language design smells was published
by Abidi et al. [3,4]. In the following, we elaborate on each of the design
smells studied in this paper; providing an illustrative example. More details
about these design smells are available in the reference catalog [3,4]. While
some of the studied design smells (e.g., Unused Parameters, Too Much Scat-
tering, and Too Much Clustering) could be applied to a single programming
language, in this study we are considering only the situations where the de-
sign smells occur in the context of multi-language systems. As described in
the previously published catalog, multi-language systems are by nature more
difficult to understand and introduce additional challenges compared to mono-
language systems. Those challenges are mainly related to the incompatibilities
of programming languages and the heterogeneity of components. Having such
design smells occurring on those systems are expected to increase the chal-
lenges related to the maintenance of these systems and introduce additional
complexity. It may be difficult for a maintainer to identify the design smells



6 Abidi et al.

occurrences, to retrace or fix a bug across different programming languages.
The studied design smells involve components and code written in different
programming languages and developers may not have a full picture and-or
understanding of the whole system.

1. Not Handling Exceptions (NHE): The exception handling mechanism is
helpful to identify and subsequently to report that an error has occurred.
However, such mechanism is programming language dependent. Indeed,
the Java exception mechanism is quite self-sufficient. When an exception is
thrown in Java code (from try block), the control looks for the appropriate
catch block that could be used to properly handle the exception. However,
unlike Java, when using JNI, the native code (C/C++) does not provide an
automatic mechanism for handling exceptions. In the case of JNI applica-
tions, when the native code is being called from Java, the exceptions do
not disturb the control flow. Handling of such exceptions is postponed until
returning back to Java code. Therefore, developers should explicitly imple-
ment the exception handling mechanism for any exception that occurs in
the native code [3,55,31,27].1 Mishandling of JNI exceptions may intro-
duce vulnerabilities and expose the JVM to security breaches [55,31,27].
Listing 1 introduces an example of this type of design smell extracted from
OpenDDS.2 In this example, the use of findClass, GetFieldID without
verifying that the call to these methods was properly executed may lead to
vulnerabilities. If the class clazz or the field fid were not retrieved cor-
rectly, this could lead to errors. A suggested solution to this smell is to add
a condition statement to verify that these functions were correctly executed
or to use the throw exceptions statement using Throw() or ThrowNew().

Listing 1: Design Smell - Not Handling Exceptions Across Languages
/* C++ */
{
jclass clazz = findClass(jni, "i2jrt/TAOObject");
jfieldID fid = jni->GetFieldID(clazz, "_jni_ptr", "J");
jlong _jni_ptr = jni->GetLongField(jThis, fid);
CORBA::Object_ptr o = reinterpret_cast<CORBA::Object_ptr>(_jni_ptr);
CORBA::release(o);
jni->SetLongField(jThis, fid,

reinterpret_cast<jlong>(CORBA::Object::_nil()));
}

2. Assuming Safe Return Value (ASRV): Since JNI requires the use of some
predefined functions to access Java objects from the native C/C++ code,
checking return values in the native code is important to ensure the cor-

1 https://www.ibm.com/developerworks/library/j-jni/index.html
2 https://github.com/objectcomputing/OpenDDS/blob/945a0df6f4a2e52be9eb766d7b717d146d1649f1/

java/idl2jni/runtime/i2jrt_TAOObject.cpp



Multi-language Design Smells: A Backstage Perspective 7

rectness of the program. Checking return values in the context of multi-
language code allows confirming that the call to a method from one pro-
gramming language to another programming language was performed cor-
rectly. Developers should implement checking values before returning vari-
ables from the native code to Java code to ensure that the program was
correctly executed. Indeed, assuming those values as correct or safe without
explicit verification may lead to errors and security issues [31,3]. Listing 2
illustrates an example of this type of design smell extracted from Android
Platform.3 Here, if the class clazz or one of its methods is not found, the
native code will cause a crash as the return value is not checked properly.
A possible solution would be to implement checks in the native code that
handle situations in which problems may occur with the return values.

Listing 2: Design Smell - Assuming Safe Multi-language Return Values
/* C++ */
staticvoid nativeClassInitBuffer(JNIEnv *_env){
jclass nioAccessClassLocal= _env->FindClass("java/nio/NIOAccess");
nioAccessClass=(jclass) _env->NewGlobalRef(nioAccessClassLocal);
bufferClass=(jclass) _env->NewGlobalRef(bufferClassLocal);
positionID= _env->GetFieldID(bufferClass, "position", "I");

3. Not Securing Libraries (NSL): Improper use of JNI can render Java appli-
cations vulnerable to security flaws in the native code. When using JNI, a
popular way to load the native library is the use of the method loadLibrary
without using a secured block. In such circumstances, the native library is
loaded without performing security checks. Therefore, malicious code can
take advantage of such security flaws to call native methods from the li-
brary. This design smell may negatively impact the security and reliability
of the system [37,3]. Listing 3, presents an example of possible refactor-
ing for this type of design smell where the native library is loaded within
a secure block extracted from the JDK.4 It is important to use a secure
block to ensure that the libraries cannot be loaded without permission.
In the context of JNI systems, it is recommended to always load libraries
in static blocks, wrapped in a call to AccessController.doPrivileged or use
the securityManager to ensure that the library cannot be loaded without
permission [3].

4. Hard Coding Libraries (HCL): When the same code is required to run
on various platforms, we need to customize the loading of the native li-
brary depending on the operating system. This design smell occurs when
the native libraries are loaded without considering operating system spe-
cific conditions and requirements (using predefined methods, for example
for Java: System.getProperty("os.name")). In such situations, the load-
ing of the library is hard-coded by the developers according to the OS.

3 https://android.googlesource.com/platform/frameworks/base/+/ba34751/core/
jni/android_opengl_GLES10Ext.cpp

4 https://github.com/oracle/graal/issues/1388



8 Abidi et al.

Listing 3: Securing Library Loading
/* Java */
static { AccessController.doPrivileged(

new PrivilegedAction<Void>() {
public Void run() {
System.loadLibrary("osxsecurity");
return null; } } ); }

Therefore, it could be difficult for an external developer to know which
library is actually loaded, which may cause confusion. We present in List-
ing 4 an example of the occurrence of this design smell extracted from
java-smt. For the example presented in Listing 4, there were some is-
sues reported that discuss the possible confusion that this type of design
smell could introduce5:“Z3’s Native class attempts to load z3java
and on failure loads libz3java, we try to guess the OS instead
of using a fallback.”, “However, Z3 uses the Linux naming convention
even for its Windows binaries, and thus the loadLibrary("z3") won’t
find anything on Windows. So we need either the if block, or a
fall-back like the Native class does”.

Listing 4: Design Smells - Hard Coding Libraries
/* Java */
public static synchronized Z3SolverContext create(
try { System.loadLibrary("z3"); System.loadLibrary("z3java");
} catch (UnsatisfiedLinkError e1) {
try { System.loadLibrary("libz3");

System.loadLibrary("libz3java");
} catch (UnsatisfiedLinkError e2) {...}

5. Not Using Relative Path (NRP): This design smell is defined by loading
the native library using an absolute path of the library instead of the corre-
sponding relative path. Using relative paths, native libraries can be loaded
anywhere. However, if the native library is no longer available or relocated,
referring to its absolute path can introduce bugs. This may likewise affect
the reusability of the code and impact the maintenance activities because
the native library can become inaccessible due to an incorrect path.

6. Too Much Clustering (TMC): Declaring an excessive number of native
methods in the same class is likely to reduce the readability and con-
sequently may impact the maintainability of the code. Such bad coding
practice will increase the lines of code in the class and hence will make the
code harder to maintain. Several studies have discussed the optimal number
of methods to include within the same class, such as the rule of 30 pro-
posed by Martin Lippert [36], or the 7 plus/minus 2 rule stating that the
human mind can accommodate and understand from five to nine objects.
The majority of the discussed relevant measures are the single principle

5 https://github.com/sosy-lab/java-smt/issues/87



Multi-language Design Smells: A Backstage Perspective 9

ZMQ

+ socket: long
+ flag: int

+ CURVE_SERVERKEY: int

+ publicKey: charBuffer

+ context: long

+ secretKey: charBuffer

+ zmq_curve_keypair(CharBuffer
CharBuffer): boolean
+ zmq_z85_encode(CharBuffer,
byte[]):boolean

+ zmq_getsockopt_int(long,
int):int

+ zmq_z85_decode(byte[],
String)

+ zmq_getsockopt_long(long,
int):long

+ zmq_send(long, ByteBuffer,
int):int

+ zmq_recv(long, ByteBuffer,int)
:int

+ zmq_connect(long,
String):boolean

+ zmq_discnect(long,String) 
:boolean 
+ zmq_poll(long,int,long):int 

+ nativeInit():void 

+ version():int 

+ zmq_ctx_new():int 

Etc...

ZMQCrypto

+ publicKey: charBuffer

+ CURVE_SERVERKEY:
int
+ zmq_curve_keypair(Cha
CharBuffer): boolean
+ zmq_z85_encode(CharB
byte[]):boolean

+ zmq_z85_decode(byte[]
String)

+ secretKey: charBuffer

ZMQ

+ POLLIN: int

+ POLLOUT: int

+ zmq_poll(long,int,long):int 

+ zmq_poll(long,int,long):int 

+ nativeInit():void 

+ version():int 

+ zmq_ctx_new():int 

Etc...

Refactoring

.cpp

.cpp

.cpp

.cpp

ZMQNetwork

+ socket: long

+ context: long

+ zmq_getsockopt_long(long
int):long

+ zmq_send(long,
ByteBuffer, int):int

+ zmq_recv(long,
ByteBuffer, int):int

+ zmq_connect(long,
String):boolean

+ zmq_discnect(long,String) 
:boolean 

+ flag: int

+ zmq_getsockopt_int(long,
int):int

Foreign Implementation

Fig. 2: Illustration of Design Smell - Too Much Clusterings

responsibility, high cohesion, low coupling, and the separation of concerns.
In this context, a bad practice would be to concentrate multi-language na-
tive methods in a few classes, regardless of their roles and responsibilities,
leading to huge classes with many methods and thus low cohesion. Figure
2 provides an example of this design smell extracted from ZMQJNI.6 In
this example, native methods are declared within the same class. How-
ever, some of those native methods are related to cryptographic operations
while others are related to network communication. This merging of con-
cerns resulted in a blob multi-language class with 29 native declaration
methods and 78 attributes. Another example is the class NativeCrypto
in Conscrypt in which 286 native methods are declared in the same class
regardless their concerns.7

7. Too Much Scattering (TMS): Managers and developers often need to settle
on a balance between isolating native code within a single or a few classes
or splitting it between many classes [3]. Getting to this compromise is
estimated to improve the readability and maintainability of the project

6 https://github.com/zeromq/zmq-jni/commit/6b0d25dd45de42680c965ec8c27f7596661bb6fa
7 https://github.com/google/conscrypt/blob/23c2ce258afd5a43258b685df4279eaa2ee0e15c/

common/src/main/java/org/conscrypt/NativeCrypto.java



10 Abidi et al.

 YUV420Image 

+ pixels: byte[]

+width: int
Etc...

+ native toRgb888()
:RGB888Image 
+native toYuv444() 
:YUV444Image

RGB888Image  

+ pixels: byte[]

+width: int
Etc...

+ native toYuv420()
:YUV420Image  
+native toYuv444() 
:YUV444Image

YUV444Image  

+ pixels: byte[]

+width: int
Etc...

+ native toRgb888()
:RGB888Image 
+ native toYuv420()
:YUV420Image  

Image  

Etc... 

Etc... 

Image  

+ pixels: byte[]

+height: int
+width: int

+ native toYuv420()
:YUV420Image  
+native toYuv444() 
:YUV444Image

+ native toRgb888()
:RGB888Image 

Etc...

Refactoring

XImage  

Etc... 

Etc... 

.cpp.cpp.cpp

.cpp

 YUV420Image 

Etc...

+ native toRgb888()
:RGB888Image 
+native toYuv444() 
:YUV444Image

RGB888Image  

Etc...

+ native toYuv420()
:YUV420Image  
+native toYuv444() 
:YUV444Image

YUV444Image  

Etc...

+ native toRgb888()
:RGB888Image 
+ native toYuv420()
:YUV420Image  

XImage  

Etc... 

Etc... 

Foreign Implementation

Fig. 3: Illustration of Design Smell - Too Much Scattering

[3]. This design smell is the opposite to smell type Too Much Clustering.
While the design smell Too Much Clustering could be introduced when
multi-language code is concentrated in a single or a few classes regardless of
their concerns, the design smell Too Much Scattering , on the other hand, is
introduced when the native code is dispersed between many classes without
satisfying both the coupling and the cohesion. Figure 3 presents an example
of design smell of type Too Much Scattering extracted from a previous work
[4]. This example presents classes that contain only two native method
declarations. The methods and classes participating in the multi-language
interaction are spread through the code in a way that determining which
classes are participating in the multi-language interaction requires some
effort. Such code will be more difficult to maintain and refactor [4]. A
suggested solution is to regroup the duplicated native methods in the same
class to reduce the number of classes participating in the multi-language
code.

8. Excessive Inter-language Communication (EXC): A wrong partitioning in
components written in different programming languages results in many
calls in one way or the other. This may increase the complexity and may
also affect the performance. The design smell Excessive Inter-language
Communication may indicate a bad separation of concerns between differ-
ent layers or components that are implemented in different programming
languages. For instance, the same object could be modified by multiple
components written in different programming languages. An excessive call
to the native code from the host code, could be introduced by calling sev-
eral native methods within the same class or within a loop with a large
number of iterations. In such situations, an object is passed several times
to and from the native code which may result in excessive inter-language
communications.

9. Local References Abuse (LRA): A local reference is created for any object
that is returned by the native code. For each method, JNI specification
permits up to 16 local references. Therefore, developers should be care-



Multi-language Design Smells: A Backstage Perspective 11

ful when dealing with Java objects and pay attention to the number of
references that are created. It is also recommended to always delete unnec-
essary local references using JNIDeleteLocalRef(). Listing 5 presents an
example of this design smell, where local references are created using the
method GetObjectArrayElement() but not deleted accordingly by calling
any of the memory release methods JNIDeleteLocalRef() or RelaseObjec-
tArrayElement().

Listing 5: Design Smell - Local References Abuse
/* C++ */
for (i=0; i < count; i++) {
jobject element = (*env)->GetObjectArrayElement(env, array, i);
if((*env)->ExceptionOccurred(env)) { break;}

10. Memory Management Mismatch (MM): The data types are different be-
tween Java and native code.8 JNI treats Java objects and classes as refer-
ence types. The JVM provides a bunch of predefined methods that can be
used to access Java objects, fields, and methods from the native code. Those
predefined methods used allow native code to either return a pointer to the
actual element at run-time or to allocate memory and create a copy of that
element. Therefore, because of the differences of types between Java and
native code, the memory will be allocated to perform corresponding type
mapping between Java and C/C++. The allocated memory should then be
released after usage, if not, memory leaks will occur. Listing 6 illustrates
an example of the occurrence of this design smell extracted from JNA9 in
which the memory was allocated to access a Java Byte Array but was not
released using ReleaseByteArrayElements().

Listing 6: Refactoring - Memory Management Mismatch
/* C++ */

jlong* data = (*env)->GetLongArrayElements(env, handles, NULL);
int count = (*env)->GetArrayLength(env, handles);

11. Not Caching Objects (NCO): To access the fields of Java objects and in-
voke their methods from the native code through JNI, the native code
must use predefined functions i.e., FindClass(), GetFieldId(), GetMetho-
dId(), and GetStaticMethodId(). For a given class, IDs returned by calling
GetFieldId(), GetMethodId(), and GetStaticMethodId() remain unchanged
during the lifetime of the JVM cycle. The invocation of these methods is
very expensive as it may require critical work in the JVM. In this case,
it is recommended for a given class to look up the IDs only during the
first usage and keep the reference for any future use. In a similar setting,
looking up class objects can be expensive. A recommended practice is to
cache commonly used classes, field IDs, and method IDs globally, so they

8 https://www.developer.com/java/data/jni-data-type-mapping-to-cc.html
9 https://github.com/java-native-access/jna/commit/a77f47fb297dd33a8cec4c88ae4777186882f472



12 Abidi et al.

can be reused when needed. Listing 7 gives an illustration of the design
smell Not Caching Objects that does not use cached field IDs extracted
from Developers’ documentation.1

Listing 7: Design Smell - Not Caching Objects’ Elements
/* C++ */
int sumVal (JNIEnv* env,jobject obj,jobject allVal){

jclass cls=(*env)->GetObjectClass(env,allVal);
jfieldID a=(*env)->GetFieldID(env,cls,"a","I");
jfieldID b=(*env)->GetFieldID(env,cls,"b","I");
jfieldID c=(*env)->GetFieldID(env,cls,"c","I");
jint aval=(*env)->GetIntField(env,allVal,a);
jint bval=(*env)->GetIntField(env,allVal,b);
jint cval=(*env)->GetIntField(env,allVal,c);
return aval + bval + cval;}

12. Excessive Objects (EO): Accessing the elements of a field by passing the en-
tire object is a common practice in object-oriented programming. Notwith-
standing, in the context of JNI, because the Object type does not exist in
C language programs, passing too many objects could prompt additional
overhead to properly perform type conversion. Indeed, this design smell
occurs when developers pass the entire object as a parameter although
only some of its fields were required, and it would have been better for
the system performance to pass only those fields (except for the purpose
of passing the object to native code to set its elements using SetxField
method). In the context of object-oriented programming, a good solution
is to pass objects for better encapsulation. However, in the context of JNI,
native code must reach back to the JVM through multiple calls to obtain
the value of each field. This may add additional overhead and likewise may
increase the lines of code which may affect the readability of the code [3].
Listing 8 illustrates an example of occurrence of the design smell passing
excessive objects extracted from Developers’ documentation.1 A possible
solution to this smell would be to pass the class’s fields in the method
signature as parameters as described in our published catalog [3].

Listing 8: Design Smell - Passing Excessive Objects
/* C++ */
int sumValues (JNIEnv* env,jobject obj,jobject allVal)
{ jint avalue= (*env)->GetIntField(env,allVal,a);
jint bvalue= (*env)->GetIntField(env,allVal,b);
jint cvalue= (*env)->GetIntField(env,allVal,c);
return avalue + bvalue + cvalue;}

13. Unused Method Implementation (UMI): This smell appears when a method
is declared in the host language (Java in our case). This method is imple-
mented in the native code (C or C++). This method may never be called
from the host language. This could result from the relocation or refactoring
in which developers selected keeping those methods to avoid breaking any



Multi-language Design Smells: A Backstage Perspective 13

connected code or features. In the context of multi-language code, devel-
opers may not easily locate such methods. Such systems usually employ
different teams working with different parts of the code. Therefore, it is not
an easy task to know which methods are used or not in the foreign code.

14. Unused Method Declaration (UMD): This design smell and the previous
one are very similar. Nonetheless, they contrast in the implementation
part, while for the smell Unused Method Implementation, the method is
implemented yet never called, in the case of the occurrence of the smell
Unused Method Declaration, the unused method is declared, however, not
implemented and never called. Such methods could remain in the project
for an extensive stretch of time without being eliminated on the grounds
that having them do not present any bug when executing the program.
However, they may contrarily affect the maintenance activities and effort
required to maintain those classes.

15. Unused Parameters (UP): Extensive list of parameters make methods diffi-
cult to understand [15]. It could likewise be an indication that the method
is doing too much or that a portion of the parameters is not, at this point
utilized. With regards to multi-language programming, a few parameters
might be part of the method signature even if they are no longer used
by components developed in other programming languages. Since multi-
language systems involve developers from various teams, those developers
often avoid removing such parameters since they may not be certain if
those parameters are used by different components. It could be a challeng-
ing task for a specific developer to know what part of the code is used by
the foreign code. Listing 9 presents a representation of this design smell
extracted from Conscrypt10where not all the parameters that are part of
the native method signature are in fact used in the implemented function.

Listing 9: Design Smell - Unnecessary Parameters
/* C++ */
static jint NativeCrypto_get_X509_ex_flags(JNIEnv* env, jclass, jlong x509Ref,

CONSCRYPT_UNUSED jobject holder) {
CHECK_ERROR_QUEUE_ON_RETURN;
X509* x509 = reinterpret_cast<X509*>(static_cast<uintptr_t>(x509Ref));
JNI_TRACE("get_X509_ex_flags(%p)", x509);

if (x509 == nullptr) {
conscrypt::jniutil::throwNullPointerException(env, "x509 == null");
JNI_TRACE("get_X509_ex_flags(%p) => x509 == null", x509);
return 0;

}
}}

10 https://github.com/google/conscrypt/blob/master/common/src/jni/main/cpp/
conscrypt/native_crypto.cc



14 Abidi et al.

3 Study Design

In this section, we present the methodology of our study.

3.1 Setting Objectives and Research Questions

We started by setting the objective of our study. Our objectives are to assess
the perceived prevalence of multi-language design smells and their severity. We
also aim to investigate how the impact of those design smells is perceived by
developers. We chose to carry out an empirical study using a survey because
development and maintenance are manual activities performed by the devel-
opers. Developers’ perception of the prevalence and impact of multi-language
design smells is important since they are the ones who maintain the multi-
language systems and who suffer from the associated challenges. In this study,
the quality focus is source code comprehension and maintainability, which can
be negatively impacted by the occurrences of design smells. The context of
the study consists of (i) objects, i.e., design smells detected in open source
projects; and (ii) subjects (developers), i.e., professional developers sharing
their perception of multi-language design smells. Our target subjects in this
study are software developers in general but also the original developers who
contributed to the analyzed systems. We defined our research questions as
follows:

RQ1: Are multi-language design smells commonly faced by developers?
We previously documented a catalog of multi-language design smells [40,
42]. We aim through this research question to assess how developers per-
ceive the prevalence of this catalog. Our goal is to capture the opinions of
software developers in general, but also the opinion of the specific group of
developers who contributed to the code impacted by those smells. We are
also interested to investigate if some specific types of smells are perceived
to be more prevalent than others. We defined the following null hypothe-
sis H1: The design smells studied in this paper are not commonly faced by
developers.

RQ2: What are the reasons behind introducing multi-language design
smells? In order to better support developers in improving the quality of
multi-language systems, it is important to understand the circumstances
under which particular design smells occur. Occurrences of design smells
could have been intentionally introduced as a result of poor knowledge
about multi-language practices. Thus, we aim to study the rationale behind
introducing such smells. Our goal here is to study the reasons that could
lead to the introduction of those smells and under what circumstances
developers are more prone to introducing such smells. In particular, we test
the hypothesis H2: There are no specific reasons behind the introduction of
multi-language design smells.

RQ3: What is the perceived impact of multi-language design smells?
We aim to study the perceived impact of multi-language design smells, on a



Multi-language Design Smells: A Backstage Perspective 15

selected set of software quality attributes. These design smells were defined
and cataloged based on several sources of information (e.g., developers
blogs, literature, bug reports, and source code) [4,3]. In our previous study
[6], we have observed that these design smells increase the risk of faults
in software systems. In this research question, we aim to understand the
perception of developers regarding the severity of the proposed smells. This
is important, since the urgency with which they refactor the smells is likely
to be affected by their perception of the importance of the issues posed by
the design smells. We defined the following null hypothesis H3: Software
quality attributes are not impacted by the studied smells.

RQ4: What are the design smells that developers perceive as the most
harmful? During maintenance activities, developers are interested to iden-
tify parts of the code that should be tested in priority or refactored. Hence,
we aim to identify design smells that are perceived by developers as the
most critical, i.e., making the project more prone to faults or increase main-
tenance costs. We defined the following hypothesis H4: Developers perceive
the design smells to have equal impacts on multi-language systems.

RQ5: Do developers plan to refactor those design smells? Design smells
are generally associated with a specific set of refactoring strategies depend-
ing on the type of smell. Depending on the development and maintenance
costs, developers may decide whether or not to remove some specific smells.
Therefore, we aim to investigate to what extent developers would apply
such refactoring. We defined the following hypothesis H5: There is no spe-
cific strategy that developers would adopt to refactor multi-language design
smells

3.2 Study Context

To achieve our objectives and to answer our research questions, we started by
analyzing the source code of selected open source projects.

Material and Objects The objects considered in this study are the occur-
rences of 15 types of multi-language design smells detected in eight open source
projects. We analyzed a total of 270 snapshots. We selected these projects
because they are well-maintained and active projects on GitHub. Another cri-
terion for the selection was ‘diversity’, i.e., those systems are from diverse
application domains, of different sizes, with varying distributions of Java and
C/C++ code. Table 1 summarizes the characteristics of the selected systems.

We reused the MLSInspect approach proposed in our previous study to de-
tect the occurrences of multi-language design smells [6]. This approach is able
to detect occurrences of those smells only in the context of JNI systems (Java
and C/C++). We previously evaluated this detection approach and measured
the recall and precision [6]. To ensure the reliability of our surveys and to miti-
gate any possible threats related to the recall and/or precision of the detection
approach, we manually validated all the occurrences of design smells that were



16 Abidi et al.

Table 1: Overview of the Studied Systems

Projects Domain #Snap LOC Java C/C++
Rocksdb Facebook Database 36 487,853 11% 83.1%
Frostwire File and Media Sharing 18 403,106 71.4% 19%
Realm Mobile Database 29 17,1705 82% 8.1%
Conscrypt Cryptography (Google) 32 91,765 85.3% 14%
Pljava Database 35 71,910 67% 29.7%
Javacpp Compiler 30 28,713 98% 0.6%
JNA Native Shared Library 32 590,208 70.2% 15.4%
OpenDDS Adaptive Communication 58 2,803,495 5% 16%

used in our survey questions to developers. This manual validation allowed us
to remove any false positives. Note that, we did not retrieve all instances of
the studied smells in each system. The manual validation was performed to
select representative examples for the surveys that are not ambiguous and easy
to understand for JNI developers. The validation process was performed by
the authors that defined the design smells. We confirmed that the examples
provided in our study follow the definition and rules of the smells types used
when documenting the design smells [3,4,6].

Participants The survey described in this study is a combination of both
an open and a closed survey. We present in the following our methodology
to gather responses from the participants, i.e., developers for each of those
surveys. For the open survey, we collected developers’ backgrounds and de-
mographic information to deal with the representativeness of the results. We
followed guidelines of sampling methods to build samples that seek to meet
the goals of this study to ensure better representativeness [18,8].

– Open Survey: We used convenience sampling and randomly contacted
developers that satisfy the criteria of the study. We used LinkedIn11 as
a research tool to reach potential developers. Similar to previous work,
we combine different sampling strategies [8]. By convenience sampling we
consider available developers willing to participate in the survey. Since
in this study we present code snippets only for JNI systems, we target
developers having experience with both Java and C/C++ programming
languages.

– Closed Survey: We mined open source projects from GitHub repository
and detected occurrences of multi-language design smells as described ear-
lier using MLSInspect [6]. We also collected information about the devel-
opers that contributed to the smelly files based on the commit logs. By
‘contributor’ we refer to any developer who did at least a commit on those
files. Note that in the closed survey, a developer is only asked about smells
contained in the files that he contributed to.

We decided to run both an open and a closed survey to capture not only
the perception of developers who contributed to the code of smelly files, but

11 https://www.linkedin.com/



Multi-language Design Smells: A Backstage Perspective 17

also the perception of other developers who are less familiar with the smelly
code files.

Studies in the literature discussed the ethics of sampling strategies [8].
This study was subject to ethical approval from the Research Ethics Board
of Polytechnique Montreal which regulates the ethical and scientific criteria
designed to protect human participants12.

3.3 Study Procedure

The experimental protocol consists of surveys that developers had to answer
through the CheckMarket website13. CheckMarket allows conducting fully-
anonymous surveys while keeping track of developers by generating tokens in
the form of Ids for each participant. We combine in this study both open and
closed surveys14. The open survey is targeting software developers in general
while the closed survey is targeting developers extracted from commit logs and
identified as contributors in the smelly files. We prepared the surveys based
on our literature review of the state-of-the-art on multi-language systems and
design smells. This review helped us to identify the dimensions and scope of
the questionnaire, the individual questions, and the possible answers for each
question [38,27,31,47].

Both surveys start with a preamble that includes the information about the
principal investigator, the research team, the ethical rights and responsibilities
of the investigators and developers (e.g., policy of the study with respect to
anonymity). The preamble also describes the objective of the study so that
developers understand our motivations for this survey and have full informa-
tion to decide whether or not to answer the surveys (or parts thereof). In the
surveys, we also provide definitions of the concepts and the design smells used
in this study.

The open survey consists of three parts, while the closed survey consists
of two parts. As shown in Table 2, the open survey contains in the first part
four closed questions to collect background information about the developers
and their profiles. The survey asks about their work position, their number of
years of working experience, the domain of activities of their organisations, and
their levels of skills in selected programming languages. These languages were
reported to be in the top ten list of languages used world-wide15. Note that we
did not include the background information in the closed survey since we are
not randomly contacting developers but our target population for the closed
survey is the original developers who contributed in the object systems. The
second part of the open survey (which corresponds to the first part of the closed
survey) contains general questions about multi-language design smells. It asks

12 https://share.polymtl.ca/alfresco/service/api/node/content/workspace/
SpacesStore/b7fbaa9e-8055-41cc-b016-dac345f6cb97?a=false&guest=true
13 https://www.checkmarket.com/
14 https://s-ca.chkmkt.com/?e=189517&h=B445656A9769E90&l=en
15 https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages



18 Abidi et al.

Table 2: Survey Questions

N. Survey Question
Background (Only for the open survey)
Q1 What is your role within your organization?
Q2 How many years of experience do you have in software engineering?
Q3 What is the domain of activity of your organization?
Q4 What is your level of skill in the following languages?
Section I - Multi-language Design Smells
Q1 How do you evaluate the impact of those design smells on the following software quality

attributes?
Q2 Please rank the following design smells from the harmful to the less harmful
Section II - Specific Tasks for Multi-language Design Smell
Q1 In your opinion, does the following code fragment(s) contain any occurrence of design

smell (implementation and-or design problem)?
Q2 If you answered yes to the previous question, please provide an explanation or specify

the design smell(s) involved?
Q3 (In your opinion,) What is the motivation behind using this specific way of implemen-

tation?
Q4 Would you apply the following refactoring or would you prefer to keep the initial imple-

mentation? please explain.

about the perceived impact on a set of selected software quality attributes, and
the perceived severity of each smell type. For the quality attributes, we selected
the following four attributes discussed by Gamma et et al. in their seminal
book about design patterns, i.e., expandability, modularity, reusability, and
understandability, and three other attributes, i.e., simplicity, learnability, and
performance. We selected these quality attributes because of their relevance
for design (anti) patterns and smells [47,23].

As shown in Table 2, we kindly asked the developers in the third part of
the open survey (second part of the closed survey) to perform a subset of tasks
(Section II of Table 2). We provided in those tasks, the source code snippets
and asked the developers about whether or not the presented code snippets
contain implementation or design problems, i.e., the design smells. We also
asked the developers about the motivation behind that specific implementa-
tion and whether developers would consider or not to refactor such code. We
proposed a refactored solution and asked the developers whether they would
consider or not to apply that refactoring. We also injected code snippets that
do not contain any of the design smells to limit the bias of this study, i.e.,
to isolate situations in which developers may provide arbitrary answers or al-
ways indicate the existence of design smells. Following previous work [47], for
each type of smell, we randomly selected a representative set of instances to
perform the survey. Depending on the type of smells, an instance could be a
method, a class, files, or a combination of source code files. We ask about a
single smell at the time and do not present code affected by more than one
design smell, since we want to evaluate each smell separately. Table 2 reports
the survey questions.

Table 3 provides an overview of the smell types and tasks associated with
each survey type. The tasks are independent and were designed in a way that
allowed us to use survey results even if a participant does not complete the
survey until the end; i.e., we can reuse the completed parts of the survey
responses. Also note that for the tasks asking about the identification of the
smell, all the questions are conditional, i.e., if a participant reports that the



Multi-language Design Smells: A Backstage Perspective 19

Table 3: Overall Developers’ Results For the Smells Identification (Open and
Closed Surveys)

Smell Open Con Fro JNA Jav Ope Plj Rea Roc
NHE 57 5 2 0 0 4 3 5 7
UP 63 5 2 1 0 4 3 5 7
NSL 58 5 2 1 4 4 0 5 7
ASRV 71 5 2 0 0 4 0 5 7
LRA 59 4 0 1 0 4 0 0 7
NRP 71 0 2 1 0 3 0 0 3
MM 57 4 0 1 0 0 3 5 5
HCL 72 0 0 0 0 0 0 0 0
EO 57 0 0 0 0 0 0 0 0
NCO 69 0 0 0 0 0 0 0 0
TMC 55 4 2 0 4 3 3 3 4
TMS 71 0 0 0 4 4 3 3 4
EXC 67 3 2 1 3 0 2 0 3
UMD 70 3 2 0 3 4 2 3 4
UMI 54 0 1 0 0 3 2 3 0
Open: OpenSurveys, Con: Conscrypt-ClosedSurvey,Fro: Frostwire-ClosedSurvey
Jav: JavaCpp-ClosedSurvey, Ope: OpenDDS-ClosedSurvey
Plj: PlJava-ClosedSurvey, Rea: Realm-ClosedSurvey, Roc: Rocksdb-ClosedSurvey

proposed code do not contain any problem or design issue, he will be directly
moved to the next task, if not he will be asked to answer the questions related
to that task. For the closed survey, as mentioned earlier, a developer was only
asked about smells contained in the files in which he contributed code. Not all
the developers performed all the survey tasks. For all these reasons, the total
number of answers considered in this study for the first part of the survey
(Section I of Table 2) is higher than the total number of answers related to
each task (Section II of Table 2) as shown in Table 3.

We contacted a total of 500 developers through LinkedIn, we received 132
responses for the open survey. For the closed survey, we contacted a total of
263 developers and received a total of 39 answers. Therefore, for the first part
of the survey (Section I), we count a total of 171 answers, while for the other
sections, the number varies from one specific type of design smell to the other
because, not all the developers responded to all the survey tasks as shown in
Table 3.

This study protocol was submitted to Mining Software Repositories (MSR)
conference 2020 [5]. The protocol went through a review process and was
evaluated by the committee prior to the execution of the survey16.

3.4 Data Analysis

We present in the following our analysis method to answer the research ques-
tions:

For RQ1, following previous work [47], we computed for each design smell
type, the percentage of answers in which the developers were able to:

16 https://osf.io/6yqv5/?view_only=4cca6dc961b44303833917c236e2d667



20 Abidi et al.

– (1) Identify a design or implementation problem, i.e., design smells when
we asked them to evaluate the code snippet containing a design smell. By
identification, we consider the situations in which the developers selected
‘yes’ as a response to the question: In your opinion, does the following code
contains any occurrence of design smell (implementation and-or design
problem)? ;

– (2) Identify the specific smell that was introduced in the code snippet. By
identification, we consider a situation in which the developers provide a
correct answer to the question: If you answered yes to the previous question,
please provide an explanation or specify the design smell(s) involved?

The percentage of correct identifications was computed out of the total number
of answers to capture the perceived prevalence of each type of smell from the
catalog defined in our previous study [4,3].

For RQ2, we used a manual approach of text analysis to extract topics
from the answers provided by the respondents to the open questions. This
research question consider practitioners answer to the question: What is your
motivation behind using this specific way of implementation? We relied on
the methodology performed by Yamashita and Moonen [60] and used coding
techniques to analyse the answer to the open question. We follow a double
verification process that was performed independently by two authors to ensure
that the answers are in the right categories and that there are no losses of
information when combined into categories.

For RQ3, we analyzed answers to the closed question: How do you evaluate
the impact of those design smells on the following software quality attributes?
We computed for each type of smell and each quality attribute the percentage
of answers in which the developers reported an impact of the smell on that
quality attribute. Since the question used the following scale: Positive, Neutral,
Negative, and Not applicable (N/A). We have for each smell, (i) the list of
quality attributes that are perceived to be negatively impacted by each smell,
(ii) the list of quality attributes that are perceived to be not impacted (neutral
impact), and (iii) the list of quality attributes, if any, that could be positively
impacted by those design smells according to the developers.

For RQ4, we analyzed developers’ answers to the question: Please rank the
following design smells from the harmful to the less harmful. Similar to previ-
ous work [60], we rely on Borda count to answer this research question. Borda
count is a rank-order aggregation technique [12]. If there are n candidates to
rank (i.e., design smells in our situation), the first ranked candidates receive
n points, the second-ranked receive n-1 points, etc. We obtain a list of all the
design smells ranked from the most harmful ones to the less harmful.

For RQ5, we compute for each type of design smell presented to the devel-
opers (along side a refactoring solution), the percentage of answers in which
the developers answered ‘yes’ to the question Would you consider using this
refactored solution or would you prefer to keep the initial implementation?
please explain.. We proposed three options to the developers (i) yes, refactor
with the proposed solution, (ii) refactor with an alternative solution, and (iii)



Multi-language Design Smells: A Backstage Perspective 21

no refactoring. We also aggregate the answers to provide a general overview of
developers’ opinions on the application of the proposed refactored solutions.

Fisher’s Exact Test: To have further insights into the results, we apply
Fisher’s exact test [51] to statistically support the results of RQ1 and RQ5.
Fisher’s exact test is a statistical test designed with the aim to assess if there
are non-random associations between two categorical variables. Fisher’s exact
test checks whether a proportion varies between two different samples. It in-
volves testing the independence of rows and columns in a 2 × 2 contingency
table based on the exact sampling distribution of the observed frequencies. In
our analysis, we also compute odds ratio (OR) [51] to complement the results
of the Fisher’s exact test. The OR quantifies the strength of the association
between two events of interest. It indicates the likelihood of a particular out-
come (e.g., an event occurrence). OR is calculated (as in Equation (1)) as
the ratio of the odds p of an event occurring in a sample, e.g., the odds that
code snippet with some specific design smells experience the event of interest
e.g., correctly identified, considered for refactoring (defined as an experimen-
tal group), to the odds q of the same event occurring in another sample, e.g.,
the odds that code snippet with other types of design smells experience the
event of interest, e.g., correctly identified, considered for refactoring (defined
as a control group):

OR =
p/(1− p)

q/(1− q)
(1)

An OR equal to 1 indicates that the event of interest is equally likely in
both samples. While an OR greater than 1 means that the event is more likely
to occur in the first sample (experimental group). An OR less than 1 indicates
that it is more likely to occur in the second sample (control group).

4 Study Results

We now present the results of our survey, answering our research questions.

Demographic information

As mentioned in Section 3, we collected the demographic information only
for the open surveys. From the open surveys we received a total of 132 de-
velopers’ responses. Developers of the open surveys originated from different
backgrounds. From our results, we found that 40 (30.3%) are software engi-
neers, 28 (21.2%) are developers, 16 (12.1%) are team leaders, 14 (10.6%) are
project managers, 11 (8.33%) are architects, 8 (2.26%) are testers, five (3.79%)
are QA-managers, four (2.26%) are self-employed, and 6 (13.53%) selected the
option “Other”. From our results, we noticed that the developers that answered
the survey have mainly five to ten years of working experience (57 out of 132



22 Abidi et al.

developers (43.2%)). 43 (32.6%) developers have more than ten years of ex-
perience. 30 (22.7%) have from one to five years of working experience, while
only two (1.52%) have less than one year of experience. This diversity in the
background gives us confidence that we reached a diverse group of developers.
From the survey responses, we observe that developers are working in different
domains of activities. 38 (28.8%) developers are in research and development,
25 (18.9%) are in analytics (business, IT services, big data), 18 (13.6%) are in
networking, 18 (13.6%) are in games, 17 (12.9%) are in robotics and embedded
systems, 7 (5.3%) are in banking and insurance. Nine (6.82%) of the devel-
opers selected the option “Other”. We asked the developers about their levels
of skills if they are Novice, have Little Knowledge, Practical, Comfortable, or
Expert in C, C++, C#, Java, and Python. The majority reported being ex-
pert or comfortable with Java, C, and C++, and comfortable with C#. For
Python, most of the developers reported being expert or comfortable. Figure
4 summarizes developers’ skills and experience with the selected programming
languages.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Python

Cpp

Java

C

Csharp

Novice Little Knowledge Practical Comfortable Expert

Fig. 4: Developers’ Experience With Programming Languages

4.1 RQ1: Are multi-language design smells commonly faced by
developers?

Approach Since our goal for this research question is to assess the prevalence
of multi-language design smells. For that, we proposed for each smell type an
example of code snippet and asked the developers whether they perceive any
design or implementation problem. We also asked them to specify the design
smell present in that code snippet.

Findings Figure 5a and Figure 5b provide the percentages of developers (for
the open and closed surveys, respectively) who (1) reported that there was a
design or implementation problem when we asked them to evaluate the code
snippet containing a design smell, and (2) correctly identified the smell that
was contained in the code snippet, for all the types of smells studied. We
report in Table 4 the total number of responses where the smell was correctly
identified by the developers for both open and closed surveys (column #Cor-
rect), and also the total number of smells that were not correctly identified
(column #Not Correct). To give a comparative insight on the proportion of de-
velopers who correctly and incorrectly identified the smells, we calculate their
corresponding percentages as shown in Table 4 (column %Correct and column



Multi-language Design Smells: A Backstage Perspective 23

Table 4: Overall Developers’ Results For the Smells Identification (Open and
Closed Surveys)

Smell Names #Correct # Not Correct %Correct % Not Correct
NHE 64 19 74.95% 25.05%
UP 69 21 75.95% 24.05%
NSL 70 16 82.5% 17.5%
ASRV 69 25 73.55% 26.45%
LRA 56 19 74.8% 25.2%
NRP 36 44 49.65% 50.35%
MM 63 12 81.9% 18.1%
HCL 23 49 31.9% 68.1%
EO 22 35 38.6% 61.4%
NCO 24 45 34.8% 65.2%
TMC 56 22 74.95% 25.05%
TMS 64 25 72% 28%
EXC 44 37 66.75% 33.25%
UMD 69 22 84.3% 15.7%
UMI 50 13 87.95% 12.05%

% Not Correct respectively). The percentages reported in Table 4 reflect the
proportion of developers who correctly and incorrectly identified the design
smells out of all the developers who answered that question. We provide in
the following the developers’ responses grouped in two categories, i.e., smells
perceived as prevalent by the majority of the participants and smells that are
not perceived as prevalent by the majority of the participants.

Smells Perceived as Prevalent by the Majority of the Participants:
Table 4 reports that for the design smell Unused Method Implementation,
87.95% (50) of the developers correctly identified the smell, while 12.05% (13)
of the developers were not able to identify the design smell occurrence. For
the design smell Unused Method Declaration, we report that 84.3% (69) de-
velopers were able to correctly identify the smell type, while 15.7% (22) were
not able to identify the existing smell. For the design smells Not Securing
Libraries and Memory Management Mismatch, by analyzing Table 4, we see
that our results show that respectively 82.5% (70) and 81.9% (63) of the de-
velopers correctly identified these smell types. These design smell types were
among the smell types correctly identified by a higher number of developers.
This could be explained by the fact that most of the surveyed developers are
aware of these smell types and may face them frequently [5]. As reported in
Table 4, we can also observe that the design smells Unused Parameters, Not
Handling Exceptions, Too Much Clustering, Local References Abuse, Assum-
ing Safe Return Value, and Too Much Scattering were correctly identified by
higher percentage of the developers.

Smells Not Perceived as Prevalent by the Majority of Participants:
For the design smell Hard Coding Libraries, from analyzing Table 4, it appears
that 31.9% (23) of the developers were able to correctly identify the smell type,



24 Abidi et al.

ASRV EO EXC HCL LRA MM NCO NHE NRP NSL TMC TMS UMD UMI UP
Smell Types

0

20

40

60

80

Pe
rc

en
ta

ge
s (

%
)

73.2

38.6

47.8

31.9

74.6

86.0

34.8

80.7

43.7

79.3

67.3
71.8

68.6

75.9 77.8

26.8

61.4

52.2

68.1

25.4

14.0

65.2

19.3

56.3

20.7

32.7
28.2

31.4

24.1 22.2

Correct
Incorrect

(a) General Developers

ASRV EXC LRA MM NHE NRP NSL TMC TMS UMD UMI UP
Smell Types

0

20

40

60

80

100

Pe
rc

en
ta

ge
s (

%
)

73.9

85.7

75.0
77.8

69.2

55.6

85.7
82.6

72.2

100.0 100.0

74.1

26.1

14.3

25.0
22.2

30.8

44.4

14.3
17.4

27.8

0.0 0.0

25.9

Correct
Incorrect

(b) Original Developers

Fig. 5: Developers’ Perceived Prevalence of Multi-language Design Smells

while 68.1% (49) of the developers were not able to identify the smell. For the
design smell Excessive Objects, we observe that 61.4% (35) of the developers
were not able to identify the design smell occurrence. The design smells Not
Using Relative Path and Not Caching Objects were also not correctly identified
by the participants. These design smell types were among the lowest correctly
identified smell types. This could be explained by the fact that these smell
types are not commonly faced by the developers and that they might not be
aware of these smell types. In one of our previous studies, we also observed
that these types of design smells are less prevalent compared to the other smell
types [6].

Our results also show that the design smells Unused Method Implemen-
tation, Unused Method Declaration, Not Securing Libraries, Memory Manage-
ment Mismatch, Unused Parameters, Not Handling Exceptions, and Too Much



Multi-language Design Smells: A Backstage Perspective 25

Table 5: Fisher’s Exact Test Results for the Smells Identification (Open and
Closed Surveys)

Smell Exp_C Ctrl_C Ex_In Ctrl_In Odds_ratio p_value Con_Intr
NHE 64 23 19 49 7.176 0.02e−7 (1.26,2.683)
UP 69 23 21 49 7.0 0.01e−7 (1.25,2.64)
NSL 70 23 16 49 9.320 0.03e−9 (1.5,2.97)
ASRV 69 23 25 49 5.88 0.01e−6 (1.097,2.45)
LRA 56 23 19 49 6.278 0.02e−6 (1.12,2.56)
NRP 36 23 44 49 1.743 0.133 (-0.11,1.22)
MM 63 23 12 49 11.185 0.09e−11 (1.62,3.21)
EO 22 23 35 49 1.340 0.461 (-0.44,1.02)
NCO 24 23 45 49 1.136 0.725 (-0.57,0.83)
TMC 56 23 22 49 5.423 0.02e−5 (0.99,2.39)
TMS 64 23 25 49 5.454 0.05e−6 (1.02,2.37)
EXC 44 23 37 49 2.533 0.006 (0.27,1.59)
UMD 69 23 22 49 6.682 0.02e−7 (1.21,2.59)
UMI 50 23 13 49 8.194 0.04e−7 (1.32,2.89)

Clustering were identified more frequently than the others. This could be ex-
plained by the nature of these types of design smells. From analysing open
source projects, we also observed that these types of design smells are among
the most prevalent ones [6]. The design smells Unused Method Implementa-
tion and Unused Method Declaration are respectively related to native methods
that are implemented but never called, and native methods that are declared
in the Java code but never implemented in the C/C++ code. These two types of
design smells could be easily identified compared to other types of smells due
to their simplicity. The design smells Not Securing Libraries, Memory Manage-
ment Mismatch, and Not Handling Exceptions are also commonly discussed
in developers’ blogs 1. The issues resulting from the Memory Management
Mismatch, and Not Handling Exceptions are commonly discussed in the liter-
ature [55,54]. All these reasons could explain why these types of design smells
were identified more frequently than the others. Also from analyzing commit
messages we found a commit message related to the design smell Unused Pa-
rameters in Conscrypt (“Our Android build rules generate errors for
unused parameters. We cant enable the warnings in the external build
rules because BoringSSL has many unused parameters”). Therefore, the
prevalence of these design smell types could explain their correct identification
by the developers.

To have further insights about the results presented in Table 4, we perform
statistical analysis by applying Fisher’s Exact test. We use this statistical test
to check whether the proportion of correct identification varies between two
samples (files with and without specific smell types) as discussed in Section 3.
Our null hypothesis here is defined as follows. There is no statistically signifi-
cant difference between the number of developers that correctly and incorrectly
identified design smells occurrences. We use Hard Coding Libraries as control
group, we use this smell type because it presents the lowest correct identi-
fication percentage reported by the participants. The goal here is to check
whether other types of smells have a higher likelihood (Odds Ratio) of be-



26 Abidi et al.

ing identified by the developers. Columns Exp_C, Ctrl_C, Ex_In, and
Ctrl_In contain the values of the contingency tables for the Fisher’s exact
test; each row corresponding to a smell type. The numbers reported in the
cells of these columns are the total number of responses for correct and in-
correct identification. Ctrl_C and Ctrl_In refer respectively to the number
of correct and incorrect responses related to the identification of Hard Cod-
ing Libraries(control group). Exp_C and Ctrl_In refer respectively to the
number of correct and incorrect responses related to the identification of the
other smell types (experimental group).

The value of the odds ratio (OR) greater than 1 from Fisher’s exact test
indicates that code experiencing that design smell have higher odds of being
perceived as an implementation problem compared to code without that de-
sign smell. The values OR < 1 indicate that code with that design smell type
have lower odds of being correctly identified and perceive as an implementa-
tion problem, while OR = 1 refers to equal identification of design smell type.
The p-value shows the probability of observing the odds ratio by chance, and
thus lower values (< 0.05) of p-value confirms the significance of the impacts
of design smell type on their identification. In addition to significant p-values,
we examine the confidence intervals of the odds ratios. A confidence interval
specifies the range where the true odds ratio lies in. To deal with the multiple
testing problem, we applied the Bonferroni correction. The Bonferroni correc-
tion presents the most common way to control the family-wise error rate. For
that, we computed the Bonferroni critical value by dividing the family-wise
error rate (0.05) by the number of tests (in our case 14 tests). By applying the
Bonferroni correction, we had 0.00357 as the Bonferroni critical value. There-
fore, a significant p-value value (< 0.00357) of an odds ratio (> 1.0) with
a confidence interval not containing 1 confirms a true relationship between
design smell types and their likelihood of correct identification.

Fisher results support the results presented in Table 4. The results indicate
a significant difference of proportions between incorrect identification of the
smell type (Hard Coding Libraries) and other smell types. For the design
smells Not Using Relative Path, Not Caching Objects, and Excessive Objects,
Table 5 reports odds ratios close to one with confidence interval not higher
than one. The obtained p-values for these design smells are not significant, not
indicating a strong likelihood difference with the smell Hard Coding Libraries.
Such results confirm our findings reported in Table 4 and indicates that the
event of interest i.e., correct identification is equally likely in both samples.
For the other design smell types, Table 5 reports odds ratios higher than one,
which indicates that the correct identification is more likely to occur in this
group. From the above results, we conclude that Fisher’s exact test indicates
a significant difference of proportions between the correct identification of the
smell types Hard Coding Libraries, Not Using Relative Path, Not Caching
Objects, Excessive Inter-language Communication, and Excessive Objects, and
the other design smell types. These smells were reported to have the lowest
correct identification percentage in Table 4.



Multi-language Design Smells: A Backstage Perspective 27

Summary of findings (RQ1): Overall, developers consider the proposed
design smells to be reflective of design and implementation problems
(especially the design smells: Unused Method Implementation, Unused
Method Declaration, Not Securing Libraries, and Memory Manage-
ment Mismatch). This provides evidence of their prevalence in multi-
language systems.

4.2 RQ2: What are the reasons behind introducing multi-language
design smells?

Approach To capture the possible reasons behind the introduction of the
studied design smells, we asked the participants to provide their opinion about
the introduction of the multi-language design smells. This question is an open
question. Therefore, we performed card sorting and manual labeling to assign
the responses to different categories.

Findings Since RQ2 is based on the analysis of an open question, we per-
formed a coding process as described in Section 3.4. For that, two authors
analysed all the answers reported by the participants in order to extract gen-
eral categories. We report in Figure 6 examples of the coding process and
the labels assigned to the participants’ responses to capture the reasons be-
hind the introduction of multi-language design smells. Table 6 summarizes the
reasons for introducing design smells along with the corresponding percent-
ages of developers that reported the reasons. We provide in the following the
definition of each category related to the reason for the introduction of multi-
language design smells along with the inclusion and exclusion criteria. Note
that each answer reported by the participants is assigned to only one label.
Therefore, the categories presented in this section are exclusive. The percent-
ages assigned to each category in Table 6 reflects the proportion of developers
that reported that category as possible potential reasons for the introduction
of design smells. The percentages are computed out of the total number of
non-null answers received.
– Refactoring and maintenance activities: This category includes re-

sponses where the participants explicitly used the terms refactoring, re-
structuring, or maintenance as a possible reason for the introduction of
the design smell. It includes reasons related to altering and editing the
code as reported in Figure 6. This category excludes any other answers
that do not mention these terms.

– Continuous development (perform regular development tasks):
This category encompasses situations where the reasons provided by the
participants were related to regular development tasks. It includes any rea-
son provided related to coding and developments tasks except situations
where they explicitly mention restructuring/refactoring/maintenance re-
lated reasons. Figure 6 provides examples of the coding process related to
this category.



28 Abidi et al.

– Ease of implementation: This category contains responses where the
participants related the reason for introducing design smells to the ease of
coding and features integration. It includes terms that reflect simplicity,
facility, easability, etc. as reported in Figure 6.

– Lack of experience: This category is related to situations where the
participants reported a lack of development experience as possible reasons
for introducing design smells. This includes responses pointing to lack of
knowledge, experience, etc. as reported in Figure 6.

– Specific implementation/design choices: This category includes situa-
tions where the participants explicitly mentioned that code with occurrence
of the design smell was the correct way of implementation.

Most of the reported reasons are related to refactoring and maintenance
activities (37.7%) (e.g., “When I started working on the project source code
was already part of it. This is probably the product of an earlier refactor-
ing”), closely followed by continuous development (perform regular develop-
ment tasks) (35.32%), this category encloses cases where the participants re-
ported reasons that describe the development task that was performed, (e.g.,
“We use it to access JMPlayer embedded functions”). This category includes
general development tasks as reported in Figure 6. Participants also pointed
to situations where they described reasons related to the category Ease of im-
plementation (17.06%) (e.g., “This makes it easier to load external libraries”).
Participants also reported that this could be the results of Lack of experience
and knowledge (5.95%) (e.g., “it seems like it’s having fun allocating memory
despite being in a language where that is usually not the point”). There were
also reasons related to specific implementation and design choices (3.57%)
(e.g., “Public methods should primarily expose the logical operations”).

Previous work investigating mono-language design smells also reported
that design smells could be introduced during refactoring and maintenance
activities [57]. While refactoring activities are in principle aimed at improving
the design of a system, our results suggest that multi-language design smells
could be introduced during refactoring activities. This could be explained by
time pressure to deliver the project, which may increase the risk of bad de-
sign decisions. Another explanation could be developers who do not have a
global view of the whole project, when deciding what to keep and what to re-
move during maintenance activities. This may result in occurrences of design
smells e.g., Unused Parameters, Unused Method Declaration, Unused Method
Implementation, and Too Much Clustering. Also considering the design smells
Too Much Clustering and Too Much Scattering, such smells are manifested by
bloated classes with an excessive number of native methods resulting in thou-
sands of lines of code. They also manifest when developers try to isolate the
native code as much as possible resulting in small class sizes with dispersed
native code. Such code is hard to refactor and maintain which may lead to
the introduction of the studied design smells. Our results in Table 6 show that
some participants reported a lack of experience and knowledge about multi-
language programming. As explained in Section 2, the combination of Java



Multi-language Design Smells: A Backstage Perspective 29

Table 6: Participants’ Perceived Reasons for the Introduction of Smells

Category Name % Percentages # Number
Refactoring and maintenance 37.7% 95
Continuous development(perform the task) 35.32% 89
Ease of implementation 17.06% 43
Lack of experience and knowledge 5.95% 15
Specific implementation/design choices 3.57% 9

and C/C++ requires some fundamental knowledge of the two programming
languages. Mishandling some fundamental concepts (e.g., types conversion,
memory allocation) may lead to occurrences of design smells.

Reasons for Introducing
Multi-language Design

Smells

Specific Implementation and Design
Choices

They're useful for reducing nested callbacks, keep it
simple stupid
Public methods should primarily expose the logical
operations

this is how it works we must store these values
locally

Easy Way of Implementation

JNI function in the example creates arrays for native.
It's the simplest way to access array elements

Easier for CI. No need to reload everything

This makes it easier to load external
libraries

Refactoring and Maintenance Although I am not sure of the reasons behind this, I
have seen similar situations resulting from iterative
development and refactoring
This code was refactored. We had to remove Legacy
Wrapper classes from the code. The wrappers were
creating an additional layer of indirection to JNIEnv

When I started working on the project source code
was already part of it. This is probably the product of
an earlier refactoring

Continuous
Development

(Perform
Development Tasks) We use it to access JMPlayer embedded

functions
this code exposes the method to the Java API by
adding it to the interface. the JNI simply delegates to
Java classes

loads the library used by external applications to
access media features

Lack of Experience and Knowledge

to me it's obvious, it's the result of a procedural
programming background
it seems like it's having fun allocating memory despite
being in a language where that is usually not the point

I can't get it trimMemory() doesn't throw any
exceptions for jni

Fig. 6: Reasons for Introducing Multi-language Design Smells

Summary of findings (RQ2): The main reasons for introducing design
smells reported by the participants are: refactoring and maintenance,
continuous development (perform regular development tasks), ease of
implementation, lack of knowledge, and specific implementation and
design choices.



30 Abidi et al.

4.3 RQ3: What is the perceived impact of multi-language design
smells?

Approach To assess the potential impacts of multi-language design smells,
we asked the developers about their perception of the impacts of the studied
multi-language design smells on selected software quality attributes. For each
design smell type, we asked the developers to evaluate whether it presents a
negative, neutral, or positive impact on the specified quality attributes. The
developers were given the option ‘N/A’ in case they were not able to evaluate
the impact. We computed the percentages of responses, where each participant
reported that a design smell of type i has an impact (i.e., positive, negative,
neutral, or N/A) on the quality attribute q as described in Section 3.

Findings We report in Table 7 the summary of the perceived impact of multi-
language design smells on software quality attributes, i.e., expandability, mod-
ularity, reusability, understandability, performance, simplicity, and learnabil-
ity. In general, the developers perceive the studied design smells as having a
negative impact on the selected quality attributes. In the following, we discuss
in detail the results of each design smells for the top three quality attributes
(based on the percentages of the developers’ responses) that were perceived to
be negatively impacted by the design smell.

Too Much Clustering From our results, 99.42% of the developers perceived
a negative impact on the software simplicity. 95.32% and 93.57% of the devel-
opers reported respectively a negative impact on software understandability
and learnability. This design smell adds complexity to the code and may im-
pede the understandability and learnability as its implementation results in
large classes with several native methods.

Unused Method Declaration From the analysis of the results in Table 7,
it appears that 94.15%, 93.57%, and 88.89% of the developers reported a neg-
ative impact on the software expandability, simplicity, and understandability
respectively. This design smell introduces unused code as it is defined by na-
tive methods that are declared in Java code but never implemented in the
native code. Such unused code may impede the software understandability.
Indeed, it may be a challenging task for developers involved in a sub part of
the system concerned by the smell, to clearly determine whether the smelly
method is used by other components or not. Therefore, the expandability and
reusability of components with occurrences of the design smell Unused Method
Declaration may also be reduced.

Unused Method Implementation From our results, we can observe that
97.08% of the developers reported a negative impact on the software simplic-
ity, 94.15% reported a negative impact on the understandability, while 92.4%
of the developers reported that this design smell negatively impacts the learn-
ability. Similar to the design smell Unused Method Declaration, it is expected
that unused code presents a negative impact on the software understandability.



Multi-language Design Smells: A Backstage Perspective 31

Table 7: Perceived Impacts of Multi-language Design Smells

Smells Impact EXP SIM RUS LRN UND PER MOD

NHE

N/A 1.17 1.17 1.17 1.17 1.17 1.17 1.17
Positive 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Neutral 21.05 25.73 24.56 23.98 15.2 26,90 43.86
Negative 77.78 73.1 74.27 74.85 83.63 71,93 54.97

UP

N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Positive 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Neutral 13.45 8.19 14.04 36.84 8.19 19,3 16.96
Negative 86.55 91.81 85.96 63.16 91.81 80,70 83.04

NSL

N/A 1.75 1.75 1.75 1.75 1.75 1.75 1.75
Positive 0.0 20.47 9.36 12.28 8.77 8.77 0.0
Neutral 39.18 14.04 22.81 28.65 39.77 32,75 37.43
Negative 59.06 63.74 66.08 57.31 49.71 56,73 60.82

ASRV

N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Positive 0.0 8.77 0.0 0.0 0.0 0.0 0.0
Neutral 15.79 22.22 15.2 14.04 16.37 17,54 12.28
Negative 84.21 69.01 84.8 85.96 83.63 82,46 87.72

LRA

N/A 1.17 1.17 1.17 1.17 1.17 1.17 1.17
Positive 0.0 11.7 0.0 0.0 3.51 0.0 0.0
Neutral 12.28 12.87 5.26 21.64 19.88 14,04 12.87
Negative 86.55 74.27 93.57 77.19 75.44 84,80 85.96

NRP

N/A 1.17 1.17 1.17 1.17 1.17 1.17 1.17
Positive 0.0 7.02 0.0 2.34 5.26 3,50 0.0
Neutral 69.59 70.18 40.35 67.84 59.65 59,06 16.37
Negative 29.24 21.64 58.48 28.65 33.92 36,26 82.46

MM

N/A 0.58 0.58 0.58 0.58 0.58 0.58 0.58
Positive 0.0 18.71 0.0 4.09 0.0 0.0 0.0
Neutral 12.28 5.26 15.79 25.73 23.39 22.22 22.22
Negative 87.13 75.44 83.63 69.59 76.02 77.19 77.19

HCL

N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Positive 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Neutral 13.45 24.56 15.79 17.54 11.11 25,15 18.13
Negative 86.55 75.44 84.21 82.46 88.89 74,85 81.87

EO

N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Positive 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Neutral 8.19 2.92 11.7 13.45 9.94 13,45 9.36
Negative 91.81 97.08 88.3 86.55 90.06 86,55 90.64

NCO

N/A 2.34 2.34 2.34 2.34 2.34 2.34 2.34
Positive 0.0 24.56 0.0 0.0 0.0 0.0 0.0
Neutral 21.64 5.26 10.53 35.67 20.47 22.22 35.67
Negative 76.02 67.84 87.13 61.99 77.19 75,44 61.99

TMC

N/A 0.58 0.58 0.58 0.58 0.58 0.58 0.58
Positive 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Neutral 10.53 0.0 9.36 5.85 4.09 8,19 25.15
Negative 88.89 99.42 90.06 93.57 95.32 91,23 74.27

TMS

N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Positive 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Neutral 7.02 14.04 7.02 12.28 8.77 14,62 13.45
Negative 92.98 85.96 92.98 87.72 91.23 85,38 86.55

EXC

N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Positive 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Neutral 14.62 9.36 12.87 9.36 6.43 13,45 8.77
Negative 85.38 90.64 87.13 90.64 93.57 86,55 91.23

UMD

N/A 0.58 0.58 0.58 0.58 0.58 0.58 0.58
Positive 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Neutral 5.26 5.85 13.45 12.28 10.53 12,28 33.92
Negative 94.15 93.57 85.96 87.13 88.89 87,13 65.5

UMI

N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Positive 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Neutral 14.04 2.92 17.54 7.6 5.85 9,36 8.19
Negative 85.96 97.08 82.46 92.4 94.15 90,64 91.81

EXP: Expandability, SIM: Simplicity, RUS: Reusablity, LRN: Learnability
UND: Understandability, MOD: Modularity, PER: Performance
NHE: NotHandlingExceptions, ASRV: AssumingSafeReturnValue
UP: UnusedParameters, UMI: UnusedMethodImplementation
UMD: UnusedMethodDeclaration, NRP: NotUsingRelativePath
NSL: NotSecuringLibraries, EXC: ExcessiveInterlangCommunication
NCO: CachingObjects, MM: MemoryManagementMismatch
LRA: LocalReferencesAbuse, HCL: HardCodingLibraries
TMS: ToomuchScattering, TMC: Toomuchclustring, EO: ExcessiveObjects



32 Abidi et al.

Given the characteristics of this design smell, it is not surprising that it is con-
sidered to have negative impacts on the software’s simplicity and learnability.

Unused Parameters Table 7 shows that 91.81% of the developers reported
a negative impact of this design smell on both software understandability and
simplicity. 86.55% of the developers reported a negative impact on the software
expandability. This design smell captures the fact that at least one of the native
method parameters is not used within its native implementation. Therefore,
such unused parameters may introduce some confusion and thus have negative
impacts on the software understandability and simplicity.

Assuming Safe Return Value This design smell is reported by 87.72%
and 85.96% of the developers, as having a negative impact respectively on the
software modularity and learnability. 84.8% of the developers reported a nega-
tive impact on the software reusability. The perceived negative impacts could
be related to the nature of this design smell. The modularity of the system is
the degree to which the implementation of the functions is independent of one
another. Therefore, not properly checking native return values may affect the
software modularity and its reusability.

Memory Management Mismatch Table 7 reports that 87.13% and 83.63%
of the developers reported a negative impact of this design smell on the soft-
ware expandability and reusability, respectively. Our results also show that
77.19% of the developers perceive a negative impact of this design smell on
the software modularity and its performance. This perception of the impact
of this design smell could be explained by the purpose of the design smell.
The JVM offers a set of predefined methods that could be used to access
fields, methods, and convert types from Java to the native code. Those meth-
ods allocate memory to each Java object that is used within the native code.
Since Java’s garbage collection system has no control over the use of dynamic
memory in the native code. Therefore, developers’ should release the memory
allocated to each Java object. Not releasing the memory may introduce bugs
and security issues [55,54]. Such issues may affect the component expandabil-
ity and reusability.

Local References Abuse Table 7 shows that 93.57% of the developers re-
ported a negative impact on the software reusability, while 86.55% and 85.96%
of the developers reported a negative impact on the software expandability and
modularity, respectively. Similarly, to the design smell Memory Management
Mismatch, this design smell type also may lead to memory issues [3]. JNI
creates locale references for any Java object that is used in the native code.
Not releasing local references may lead to memory issues, especially since the
JVM enables to create a maximum of 16 local references. Exceeding the max-
imum number without informing the JVM may introduce bugs and memory
leaks [55]. A component that is often subject to memory issues may have low
reusability and expandability. Especially for JNI systems, several studies in
the literature discussed the issues and vulnerabilities that could result from
not properly releasing the memory [31,54].



Multi-language Design Smells: A Backstage Perspective 33

Not Handling Exceptions This design smell was perceived by 83.63% and
77.8% of the developers to have a negative impact on the software understand-
ability and expandability, respectively. Our results show that 74.85% of the
developers reported a negative impact on the software learnability. The man-
agement of exceptions has been discussed in the literature as one of the main
concerns in the context of JNI systems [54]. Indeed, occurrences of this design
smell may introduce some challenges and even bugs, which could explain the
negative impacts reported by the developers. Since multi-language code re-
quires access from the host code components that are implemented in another
programming language, mishandling exceptions may require additional effort
to properly locate and fix the bug. Therefore, such design smell may negatively
impact the understandability and learnability.

Excessive Inter-language Communication This design smell was reported
by respectively 93.57% and 91.23% of the developers to negatively impact the
understandability and modularity of the system. The results also show that
90.64% of the developers reported negative impacts of this design smell on the
software learnability and simplicity. This design smell captures excessive com-
munications between components written in different programming languages.
Such excessive communications may impede the software understandabiliy,
learnability, and simplicity.

Excessive Objects Table 7 reports that 97.08% and 91.81% of the developers
reported a negative impact on the software simplicity and expandability, while
90.65% of developers reported a negative impact on the software modularity. It
is not surprising that this design smell is perceived as negatively impacting the
software quality, since it occurs when developers pass a whole object from Java
to native code, when only some of the object fields are needed. The access to the
Java object from the native code requires a call to specific methods following
a specific order. Such methods may impact the simplicity and expandability
of the software component.

Too Much Scattering Table 7 shows that 92.98% of the developers reported
a negative impact on the software expandability and reusability, and 91.23%
of the developers reported a negative impact on the understandability. The
negative impacts could be explained by the fact that the smell occurs when
the native declaration methods are scattered in different components of the
Java code. This dispersion may impede the reusability of parts of the code and
make it hard for developers to expand the code of the system.

From our results, we also observe that some quality attributes are less im-
pacted than the others. Table 7 shows that 70.18% of the developers reported
that the design smell Not Using Relative Path has a neutral impact on the
software simplicity. 69.59% and 67.84% of the developers reported a neutral
impact on the software expandability and learnability. Given the characteris-
tics of this design smell, having a neutral impact on the expandabiliy is rather
surprising as it may affect the access to the native library. However, the neutral
impacts on the software simplicity and learnability could be explained by the



34 Abidi et al.

definition of the design smell itself. Indeed, occurrences of the design smell Not
Using Relative Path could result in a piece of code that is relatively simpler
compared to its refactored solution. However, this design smell may affect the
reusability of the code and increase the cost of maintenance activities if the
library is no longer available.

The design smell Not Securing Libraries was also reported by some devel-
opers to have a neutral impact on some software quality attributes. 39.77%
and 39.18% of the developers reported a neutral impact on the software un-
derstandability and expandability. Our results also show that 66.08% of the
developers reported a negative impact of this design smell on the software
reusability. The negative impacts of this design smells on software reusability
could be expected. Indeed, insecure code leaves breaches in the code; opening it
to malicious attacks, and thus could reduce the resuability of that component.
The neutral impacts reported on the software understandability and expand-
ability could be explained by the fact that this design smell results in a simple
block to load the library. Occurrences of this design smell are manifested when
the native library is loaded without a call to any specific methods that ensure
that the library could not be loaded by unauthorized code. To refactor this de-
sign smell, developers are required to add an additional security block, which
may impede the effort required to understand the code.

The results in Table 7 show that in general the design smells are perceived
to have a negative impact on the studied quality attributes. Understandability
of the software was reported to be negatively impacted by the design smells.
Understandability is one of the main concerns during maintenance activities.
Several studies in the literature discussed the challenges of understanding and
maintaining multi-language systems [35,28,39]. We believe that occurrences of
design smells are likely to increase the effort needed to understand and main-
tain multi-language systems. From Table 7, we observe that the design smells
Too Much Clustering (95.32%), Unused Method Implementation (94.15%), and
Excessive Inter-language Communication(93.57%) are among the design smells
mostly perceived to have a negative impact on the software understandability.
Reusability is also reported to be negatively impacted by the design smells. The
design smells Too Much Scattering (92.98%) and Too Much Clustering (90.06)
are among design smells that are perceived to have the most negative impact on
the software reusability. This may be the consequence of the negative impacts
of the design smells on the software quality, i.e., fault-proneness as reported
in our previous study [6]. Too Much Clustering smell occurs when too many
native methods are declared in a single class creating a blob class resulting in
poor comprehension and maintainability of the code. This is likely to add more
risk of bugs as reflected in our previous study [6]. Too Much Scattering smell
occurs when native methods scatters (often duplicated) over scarcely used
classes which are likely to introduce maintenance challenges and increase the
risk of bugs. Design smells may impact components’ lifetime, limit their porta-
bility and impede their reusability. Developers considered a neutral impact on
the studied quality attributes for some specific types of design smells Not Us-
ing Relative Path, Not Securing Libraries. These design smells were perceived



Multi-language Design Smells: A Backstage Perspective 35

to have a neutral impact on the simplicity. The simplicity was also reported to
be negatively impacted mainly by Too Much Clustering (99.42%) and Unused
Method Implementation (97.08%). This could be explained by the nature of
these design smells, as they are adding extra complexity to the code and thus
may affect its simplicity.

Summary of findings (RQ3): Most of the studied design smells were per-
ceived as negatively impacting the studied software quality attributes.
The design smell Not Using Relative Path was perceived to have a
neutral impact. Having knowledge of their existence and the potential
impact could help to improve the quality of multi-language systems.

4.4 RQ4: What are the design smells that developers perceive as
the most harmful?

Approach To assess the perceived severity of multi-language design smells,
we asked the developers to rank the design smells based on their perceived
level of harmfulness (from the most harmful to the less harmful) using a score
from 15 to 1 (15 for the most harmful, 1 for the less harmful). We asked
the developers to consider the impact of the design smells on software quality
during the ranking. We used the Borda Count technique to rank the candidates
i.e., design smells as described in Section 3. By considering the number of votes
associated with each design smell, the Borda count yields a consensus-based
ranking instead of a majority-based one [12].

Findings Table 8 reports the aggregated results of the Borda Count. Table
8 also provides the median perceived severity associated with each smell type.
We found that Not Handling Exceptions is perceived as the most harmful de-
sign smells with a score of 2261, closely followed by Assuming Safe Return
Value with a score of 2137. We also report the median severity associated to
those smell types. Both Not Handling Exceptions and Assuming Safe Return
Value received the highest median severity value of 12. The design smell Local
References Abuse is also reported to be harmful with a median severity of 11,
but with a Borda Count of 2063. The developers also considered the smell
Memory Management Mismatch to be harmful with a median severity of nine
and a Borda score of 2052. The design smells Excessive Inter-language Com-
munication and Too Much Clustering were also perceived by the developers as
harmful with a median severity of 11 and 10 respectively, and a Borda Count
score of 2040 and 1876, respectively.

The design smells Hard Coding Libraries, Not Using Relative Path, Unused
Method Declaration, and Unused Parameters were reported to be less harmful
compared to the other smells with a median severity value of five for all of
them. Their Borda Count scores are 746, 632, 588, and 438, respectively.



36 Abidi et al.

Table 8: Ranking of Multi-language Design Smells from Developers’ Percep-
tion

Design Smells Score (Borda) Median Severity
Not Handling Exceptions 2261 12
Assuming Safe Return Value 2137 12
Local References Abuse 2063 11
Memory Management Mismatch 2052 9
Excessive Inter-language Communication 2040 11
Too Much Clustering 1876 10
Not Securing Libraries 1358 7
Too Much Scattering 1342 7
Excessive Objects 1211 6
Unused Method Implementation 964 5
Not Caching Objects 812 6
Hard Coding Libraries 746 5
Not Using Relative Path 632 5
Unused Method Declaration 588 5
Unused Parameters 438 5

These ranking results could be explained by the definition and the nature
of the design smells. It is expected to consider Not Handling Exceptions, As-
suming Safe Return Value, Local References Abuse, and Memory Management
Mismatch among the most harmful design smells. Indeed, these types of de-
sign smells could be directly related to the introduction of bugs. Some of these
design smells were indeed related to bugs, e.g., Conscrypt : “Fixed various
memory leaks and Java 8 JNI Compatibility WARNING in native method:
JNI call made without checking exceptions when required to from
CallObjectMethod”. Several studies in the literature also discussed the bugs
and issues that could result from mishandling exceptions and memory issues
[54,55]. The developers reported that they perceive the design smells Unused
Method Declaration and Unused Parameters as less harmful than the others.
However, we believe that all the design smell types should be considered with
caution, including those that are perceived to be less harmful. In fact, even
if the nature of some design smells may not seem directly related to bugs,
still these design smells can increase the maintenance effort and even lead to
bugs, e.g., “There were a bunch of exceptions that are being thrown
from JNI methods that aren’t currently declared”, and “Fix latent
bug in unused method” present examples of commit messages extracted re-
spectively from Conscrypt and Pljava.



Multi-language Design Smells: A Backstage Perspective 37

Summary of findings (RQ4): The design smells perceived to be the
most harmful are: Not Handling Exceptions, Assuming Safe Return
Value, Local References Abuse, Memory Management Mismatch, Ex-
cessive Inter-language Communication, and Too Much Clustering. The
design smells perceived by the developers as less harmful are: Unused
Parameters,Unused Method Declaration, Not Using Relative Path, and
Hard Coding Libraries. Our results highlight the importance of priori-
tizing multi-language smells for maintenance and refactoring activities.

4.5 RQ5: Do developers plan to refactor those design smells?

Approach One way to ensure the software quality is the identification and
refactoring of design smells occurrences. Therefore, we aim to investigate
whether developers would consider refactoring the design smell occurrences,
and whether the refactoring considerations vary from one specific type of smells
to the other. For each code snippet in which the developers reported a design or
implementation problem, we also asked them if they would consider applying
any refactoring to remove the identified problem. Specifically, we proposed a
solution and asked them whether they would refactor with the given solution,
refactor with an alternative solution, or whether they would not refactor. We
then computed for each smell type, the percentage of developers who reported
that they would refactor the code with the proposed solution, refactor the code
with an alternative solution, or would not refactor the code. We also aggregate
the responses to provide a general overview of the developers’ opinions about
refactoring multi-language design smells.

Findings Figure 7a and Figure 7b present the percentage of developers (for
the open and closed surveys, respectively) who (1) selected option No, when
we asked them if they would consider refactoring the design smell presented
in the code snippet; (2) selected “Yes” for the given solution; or (3) selected
“Yes” for any alternative refactoring solution. We also report in Table 9 an
overview of the developers responses for the combination of both open and
closed surveys. This table reports for each smell type, #No and %No: the
total number and percentage of developers that reported that they would not
consider refactoring the design smells. #Yes_Gi and %Yes_Gi: the total
number and percentage of developers that reported that they would apply the
proposed solution. #Yes_Alt and %Yes_Alt: the total number and per-
centage of developers who reported that they would refactor with an alterna-
tive solution. The percentages values reported in Table 9 reflect the proportion
of developers who reported that they would not refactor, refactor with a given
solution, refactor with an alternative solution out of all the developers who an-
swered that question. From our results in Table 9, we observe that developers’
decision on refactoring is dependent on the design smells types.



38 Abidi et al.

ASRV EO EXC HCL LRA MM NCO NHE NRP NSL TMC TMS UMD UMI UP
Smell Types

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
s (

%
)

20.3

62.9

56.5

12.5

23.6
21.8

39.6

22.0

31.8

25.5
28.6

34.4

54.8 54.7

18.5

75.0

31.4 30.4

35.4

63.6

69.1

52.1

72.0

29.5

70.6

61.2
59.0

45.2

39.6

74.1

4.7 5.7

13.0

52.1

12.7
9.1 8.3

6.0

38.6

3.9

10.2
6.6

0.0

5.7 7.4

No refactoring
Refactor with given solution
Refactor with alternative solution

(a) General Developers

ASRV EXC LRA MM NHE NRP NSL TMC TMS UMD UMI UP
Smell Types

0

20

40

60

80

Pe
rc

en
ta

ge
s (

%
)

27.8

41.7

35.7

0.0

36.8
40.0

25.0

0.0

13.3

57.1 55.6 54.5

72.2

0.0

57.1

93.8

57.9

0.0

75.0

95.0

73.3

38.1

44.4
40.9

0.0

58.3

7.1 6.2 5.3

60.0

0.0
5.0

13.3

4.8
0.0

4.5

No refactoring
Refactor with given solution
Refactor with alternative solution

(b) Original Developers

Fig. 7: Developers’ Perceived Refactoring Considerations for the Design
Smells

Smells that would be refactored: From the results presented in Table 9,
we can observe that for the design smell Memory Management Mismatch,
81.45% out of all the developers who answered this question reported that they
would apply the proposed refactored solution while only 10.9% reported that
they would not consider refactoring that design smell. For the design smell
Too Much Clustering, 78.1% of the surveyed developers reported that they
would consider the proposed refactoring solution, and 14.3% would not con-
sider refactoring that design smell. For the design smells Assuming Safe Return
Value and Not Securing Libraries, 73.6% and 72.8% of the developers respec-
tively reported that they would consider the proposed solution for refactoring.
These results confirm and complement our earlier empirical evidence reported
from analysing open source projects and the commit messages [6]. Indeed, we
have reported that some of the studied design smells were explicitly removed
by the developers due to possible improvements or bugs these smell types
could introduce (e.g., in Realm, a commit message was discussing errors re-
lated to memory management “DeleteLocalRef when the ref is created



Multi-language Design Smells: A Backstage Perspective 39

Table 9: Overview Developers’ Results For Refactoring the Smells (Open
and Closed Surveys)

Smell #No #Yes_Gi #Yes_Alt %No %Yes_Gi %Yes_Alt
NHE 18 47 4 29.4 64.95 5.65
UP 22 49 5 36.5 57.5 5.95
NSL 19 54 2 25.25 72.8 1.95
ASRV 18 61 3 24.05 73.6 2.35
LRA 18 43 8 29.65 60.35 9.9
NRP 16 13 20 35.9 14.75 49.3
MM 12 53 6 10.9 81.45 7.65
HCL 6 17 25 12.5 35.4 52.1
EO 22 11 2 62.9 31.4 5.7
NCO 19 25 4 39.6 52.1 8.3
TMC 14 49 6 14.3 78.1 7.6
TMS 23 47 6 23.85 66.15 9.95
EXC 31 14 13 49.1 15.2 35.65
UMD 46 36 1 55.95 41.65 2.4
UMI 34 25 3 55.15 42 2.85

in loop (#3366) Add wrapper class for JNI local reference to delete
the local ref after using it”).

Smells that would not be refactored: When asking the developers if they
would consider refactoring the occurrences of the design smell Excessive Ob-
jects, 62.9% of the developers selected the option “No”, meaning that they
would not refactor the code to remove the design smell. The results show that
31% reported that they would consider applying the given refactoring solution,
while only 5.7% reported that they would use an alternative refactoring solu-
tion to remove the smell. This result could be explained by safety concerns.
When features are mixed together with excessive calls between components
written in different programming languages, a change to the behavior of one
may cause a bug in another feature. Therefore, developers may be reluctant to
remove the design smell to avoid possible side effects that can cause bugs. For
the design smells Unused Method Implementation and Unused Method Declara-
tion, 55.95% and 55.15% of the surveyed developers respectively reported that
they would not consider refactoring the design smell, while 41.65% and 42%
respectively reported that they would apply the proposed refactoring solution.
These results could also be related to safety concerns. Native implementations
and methods could be tricky to refactor since they are declared in one pro-
gramming language and could be used in another programming language as
described in Section 2. Thus, refactoring such occurrences may introduce bugs
if the methods are still used by external code.

From Figure 7a and Figure 7b, we observe that there are a few cases where
the choice about the refactoring varies between the open and closed surveys.
For example, for the design smell Unused Parameters, while in the open survey
75% of the developers reported that they would consider applying the proposed
refactoring, 54.5% of the original developers (in the closed survey) reported



40 Abidi et al.

Table 10: Fisher’s Exact Test Results for the Smells Refactoring (Open and
Closed Surveys)

Smell Ex_Y Ctrl_Y Ex_N Ctrl_N Odds_ratio p_value Con_Inter
NHE 51 13 18 22 4.7955 0.05e−3 (0.7,2.44)
UP 54 13 22 22 4.154 0.09e−3 (0.578,2.27)
NSL 56 13 19 22 4.988 0.36e−3 (0.75,2.47)
ASRV 64 13 18 22 6.017 0.04e−4 (0.93,2.66)
LRA 51 13 18 22 4.795 0.05e−3 (0.7,2.44)
NRP 33 13 16 22 3.490 0.008 (0.34,2.16)
MM 59 13 12 22 8.3205 0.04e−5 (1.194,3.04)
HCL 42 13 6 22 11.846 0.04e−5 (1.38,3.57)
NCO 29 13 19 22 2.583 0.046 (0.05,1.85)
TMC 55 13 14 22 6.648 0.27e−4 (0.99,2.8)
TMS 53 13 23 22 3.899 0.002 (0.52,2.20)
EXC 27 13 31 22 1.474 0.396 (-0.47,1.25)
UMD 37 13 46 22 1.361 0.542 (-0.50,1.12)
UMI 28 13 34 22 1.394 0.523 (-0.52,1.18)

that they would not consider refactoring that design smell. The same goes
for the design smell Excessive Inter-language Communication; while 56.5% of
the developers of the open survey reported that they do not consider refactor-
ing the design smell, 58.3% of the original developers (in the closed survey)
reported that they would consider refactoring the design smell with an alter-
native solution.

From Figure 7a and Figure 7b, we observe that in general, almost all the
developers reported that they would consider refactoring the design smells.
This may indicate that multi-language design smells are perceived by the de-
velopers as harmful, and refactoring them is likely to be among their priori-
ties. This could be resulting from the impacts of the design smells on software
quality. As reported in the two previous research questions, the developers
perceive the design smells as harmful and consider them to have a nega-
tive impact on software quality. In addition, in most of the situations, the
developers reported that they would consider applying the refactoring solu-
tions that we proposed. Therefore, we believe that a refactoring approach
could be considered to improve the quality of multi-language systems by
removing the occurrences of multi-language design smells. From analyzing
bug-fixing commit messages, we identified some commits reporting a refactor-
ing for specific smells, e.g., “removing unused parameter”, “implementing
the handling of exception”. Those commit messages suggest that develop-
ers often refactor occurrences of the studied design smells.

Similar to RQ1, to have further insights into the results of RQ5, we per-
formed statistical analysis by applying Fisher’s Exact Test as described in
Section 3. Our null hypothesis here is defined as follows. There is no statisti-
cally significant difference between the percentages of developers considered to
refactor and not to refactor the design smells occurrences. We use Excessive
Objects as control group. This design smell presents the highest percentage of
participants choosing not to refactor. The goal here is to check whether other
types of smells have a higher likelihood (Odds ratio) of being refactored by the
developers. Table 10 reports the results of applying Fisher’s Exact test. Table



Multi-language Design Smells: A Backstage Perspective 41

10 reports the values of the contingency tables for the Fisher’s exact test; each
row corresponding to a smell type. The numbers reported in the cells of these
columns are the total number of responses for which participants reported
that they would consider to refactor or not to refactor that design smell type
(refactoring results for Yes_Given and Yes_alternative solutions are aggre-
gated). Ctrl_Y and Ctrl_N refer respectively to the number of developers
who reported that they would and would not refactor the design smell Exces-
sive Objects (control group). Exp_Y and Ctrl_N refer respectively to the
number of developers who reported that they would and would not refactor the
other smell types (experimental group). Fisher’s test results support the results
presented in Table 9. For almost all the design smell types, Table 10 reports
odds ratios higher than one, with significant p-values. To deal with the multi-
ple testing problem, similar to RQ1, we applied the Bonferroni correction. By
applying the Bonferroni correction, we had 0.00357 as the Bonferroni critical
value. Therefore, a significant p-value value < 0.00357 (corrected as 0.05/14)
of an odds ratio (> 1.0) with a confidence interval not containing 1 confirms a
true relationship between design smell types and their likelihood of refactoring
decision. The results indicate a significant difference of proportions between
the refactoring decision of the smell type (Excessive Objects) and other design
smell types. For the design smells Excessive Inter-language Communication,
Unused Method Declaration, and Unused Method Implementation, Table 10
reports odds ratios close to one with confidence interval not higher than one
and with non-significant p-values. Such results confirm our findings reported
in Table 9 and indicate that the event of interest, e.g., refactoring decision is
equally likely in both samples, i.e., experimental group, and control group as
described in Section 3. Therefore, we conclude that most of the participants as
shown in Table 9 reported that they would not consider refactoring the design
smell Excessive Objects, Unused Method Declaration, and Unused Method Im-
plementation, while they would consider refactoring most of the other design
smell types and this difference is statistically significant (except for Not Using
Relative Path and Not Caching Objects). Our results suggest that specific
refactoring tools could help to improve the quality of multi-language systems.

Summary of findings (RQ5): The refactoring consideration varies from
one specific smell type to another. However, for the majority of smell
types, the developers reported that they would consider refactoring
the design smells. This might be indicative of the developers’ concern
related to the studied design smells and refactoring of those likely to
improve the quality of multi-language systems.

5 Discussion and Implications

We now discuss the results reported in Section 4.



42 Abidi et al.

5.1 Developers’ Perception of Multi-language Design Smells

Prevalence of Multi-language Design Smells: From our results in RQ1,
we observe that developers were mainly able to correctly identify the following
design smells: Unused Method Implementation, Unused Method Declaration,
Not Securing Libraries, Memory Management Mismatch, Unused Parameters,
Not Handling Exceptions, and Too Much Clustering. The design smell Unused
Method Implementation is defined by a native method that is implemented
but never called from the host code, while the design smell Unused Method
Declaration is about a native method that is declared in the host code but
is never implemented in the native code. In the same vein, the design smell
Unused Parameters is about a parameter that is passed from the java to the
native code without being part of the native implementation. These design
smells are related to unused code. Therefore, based on our previous research
studies and experience with the analysis of multi-language systems [4,3,2,6],
we believe that it is not very surprising that the developers were able to iden-
tify them easily, which provides additional evidence of their prevalence and
existence in multi-language systems. Since multi-language systems are emerg-
ing from the concept of combining components written in different languages
and they generally involve different developers who might not be part of the
same team. It could also be a challenging task for a developer working only on
a sub-part of a project to clearly determine whether that specific parameter
or method is used by other components.

Regarding the design smell Too Much Clustering it is also not surpris-
ing to see that developers were able to identify it correctly, because we be-
lieve that this type of design smell is widespread; developers may frequently
observe occurrences of this design smell type [6]. The design smells Mem-
ory Management Mismatch and Not Handling Exceptions are commonly dis-
cussed in several research articles and developers’ blogs discussed bugs related
to mishandling JNI exceptions and the management of the memory [55,54,
3]. Therefore, it is also expected that most of the developers were able to
identify these types of design smells. Similarly, another commit message was
reporting on the design smells Not Handling Exceptions and Memory Manage-
ment Mismatch in Conscrypt (“rework exceptions throwing from jni”,
“Added error handling of all uses of sk_*_push which can fail due
to out of memory”). On the other hand, most of the developers were not able
to correctly identify the design smells Hard Coding Libraries, Excessive Ob-
jects, Not Using Relative Path, and Not Caching Objects. From our results,
most of the responses related to the identification of these design smell types
are resulting from the open survey as shown in Table 3. Therefore, the per-
ceived prevalence for these design smell types is resulting from the general
developers and not the original developers. For these design smell types, our
results reflect the perceived prevalence from the perspective of general devel-
opers.

Impacts of Multi-language Design Smells on Software Quality:
From analyzing the results of RQ4, we found that the developers reported



Multi-language Design Smells: A Backstage Perspective 43

design smells Not Handling Exceptions, Assuming Safe Return Value, Local
References Abuse, Memory Management Mismatch, Excessive Inter-language
Communication, and Too Much Clustering as the most harmful types of design
smell. While the design smells Unused Parameters,Unused Method Declaration,
Not Using Relative Path, and Hard Coding Libraries are perceived as less
harmful.

Considering the design smells Not Handling Exceptions and Assuming Safe
Return Value as harmful could be explained by the possible issues that could
arise from these types of design smells. Indeed, the management of exceptions
may not be automatically ensured depending on the programming languages.
In some situations, developers should explicitly implement the exception han-
dling flow. Similarly, return values are often used in multi-language systems to
pass objects and values from one language to the other. Thus, it is important to
ensure that the interaction between components of different programming lan-
guages is successfully completed. Otherwise, bugs and issues may occur [3,2,55,
54]. The design smells Local References Abuse and Memory Management Mis-
match were both reported as harmful. These design smells may lead to memory
leaks which are also commonly discussed in the JNI development literature [3,
2,55,54]. The management of the memory should be considered separately for
both Java and C/C++ sides. Unlike Java, the C language requires developers
to explicitly take care of the management of the memory using available func-
tions such as malloc and free. However, this leak and mismatch between Java
and C/C++ is a source of programming defects since it is introducing security
vulnerabilities. The manual process of managing the memory is likely to intro-
duce memory leaks. Thus, developers should pay more attention to memory
management when they are in the context of multi-language development. An
example of commit message in Realm reflects a case of bug related to the
design smell Local References Abuse (“Local ref needs to be cleaned on
client thread (#4830), Clean the local ref after notifyAllChanges
Downloaded”). In Rocksdb, we also found a commit message describing a bug
resulting from the design smell Memory Management Mismatch (“As raised
in #2265, the arena allocator will return memory that is improperly
aligned to store a ‘std::function‘ on macOS.”)

Introduction of Multi-language Design Smells: Our results from
RQ2 emphasize that the main reasons for introducing design smells are re-
lated to refactoring and maintenance activities, and the continuous develop-
ment (perform regular development tasks). This could be resulting from the
fact that similar to mono-language systems, for multi-language systems also,
occurrences of design smells could be introduced due to time pressure. Results
also suggest that another reason for the introduction of the design smell is
related to implementation complexity vs quality trade-off, leading to the de-
veloper’s choice of the ease of implementation due to time constraints. This
finding could be explained by the fact that some of the design smells types
are defined by a missing check or a call to specific methods. Therefore, even if
the implementation would look simpler without the occurrence of some types
of the design smells, e.g., Not Handling Exceptions, Memory Management



44 Abidi et al.

Mismatch, Local References Abuse, Assuming Safe Return Value, these design
smells increase the maintenance activities and could introduce bugs [6]. Hence,
we believe that developers should be cautious with the occurrences of the stud-
ied design smells. Our results also report situations in which the participants
explicitly reported a lack of experience and knowledge. This finding could be
explained by the lack of established guidelines and common practices that
developers should consider when dealing with multi-language systems. Also,
those systems require developers working on any of the system’s components
to have experience in multiple programming languages. In addition, devel-
opers are required to consider the synchronisation and the data conversion
between different programming languages since each programming language
has its own rules (i.e., lexical, semantic, and syntactical). Therefore, we believe
that formal guidelines could help improve the quality of multi-language sys-
tems and reduce their challenges by reducing the occurrences of design smells.
Since our results report that the studied design smells could be introduced
while performing daily development activities, e.g., refactoring, and continu-
ous development. Having knowledge of the occurrences of design smells could
improve the quality of multi-language systems.

Refactoring of Multi-language Design Smells: From our results in
RQ5, we found that in general, the developers would consider refactoring de-
sign smells occurrences. Our results also suggest that the developers would
apply the proposed solution for refactoring. Hence, we believe that an ap-
proach to automatically remove such occurrences of smells has a good chance
of adoption by developers. During our analysis, we also observed situations
where the original developers of a smelly file reported that they would not
consider refactoring the occurrence of the design smells. This is the case for
the design smell Unused Parameters, for example. We attribute these devel-
opers’ decisions to the risk of side effects that could result from refactoring
parts of the code on which they have imperfect knowledge. We also attribute
these decisions in part to the nature of multi-language programming. Since
multi-language systems may involve different teams who contribute separately
using different programming languages, developers’ may not have a global view
of the whole system to decide whether for example a parameter could be re-
moved without causing bugs or breaking changes to other related components
(e.g., in the case of the Unused Parametersdesign smell). However, as pre-
sented in some examples of extracted commit messages, there were situations
in which the developers explicitly reported removing occurrences of the design
smell Unused Parameters because there were bugs resulting from this design
smell type. Therefore, we believe that developers should consider refactoring
occurrences of multi-language design smells whenever possible.

5.2 Comparative Insights Regarding Previous Works

In a previous work [6], we studied the prevalence of design smells in open
source projects. Our results show that most of the design smell types are
prevalent in open source projects, in particular Unused Parameters, Too Much



Multi-language Design Smells: A Backstage Perspective 45

Scattering, Unused Method Declaration, while others are less prevalent, e.g.,
Excessive Objects and Not Caching Objects. The results from surveying devel-
opers confirm this finding of the prevalence of the design smells. Therefore, we
believe that most of the design smells studied in this paper are prevalent and
are considered by developers to reflect design and implementation problems.

Regarding the severity of multi-language design smells, in our previous
study [6], we reported that files with occurrences of multi-language design
smells are more likely to be subject to bugs than files without those types
of design smells. We also report that some specific types of design smells are
more related to bugs than others: Unused Parameters, Too Much Cluster-
ing, Too Much Scattering, Hard Coding Libraries, Not Handling Exceptions,
Memory Management Mismatch and Not Securing Libraries. From surveying
developers, we found that in general, most of the design smells have a negative
impact on software quality attributes, and that they are considered harmful
by developers. However, some specific types are reported to be more harmful
than the others: Not Handling Exceptions, Assuming Safe Return Value, Local
References Abuse, Memory Management Mismatch, Excessive Inter-language
Communication, and Too Much Clustering are reported to be the most harmful
design smell types. The design smells Hard Coding Libraries, Not Using Rela-
tive Path, Unused Method Declaration, and Unused Parameters were reported
by the developers as less harmful than the other types of smells. Comparing
the findings from our previous study and this study, we observe that while
some types of design smells are considered by developers as less harmful, they
are among of the most harmful design smells and were reported to increase
the risk of introducing of bugs [6]. Indeed, developers reported that the design
smells Unused Parameters and Hard Coding Libraries are less harmful com-
pared to other types of design smells. However, from analyzing open source
projects, we found that these two types of design smells are considered among
the most bug-prone types of design smells. Studying each type of smell sepa-
rately also allowed us to capture their impact individually. Surveying develop-
ers about the harmfulness and perceived impacts of each smell type separately
also allowed us to capture the developers’ perception versus the real impacts
in open source projects. The insights from this study could help developers to
prioritize multi-language smells for maintenance and refactoring activities. Es-
pecially that some of the design smells that are not perceived as prevalent do
actually have an impact on the software fault-proneness as reported in our pre-
vious empirical study [6]. We have observed commit messages indicating refac-
toring for removing specific smells that caused bugs (e.g., commit messages:
e.g., “There were a bunch of exceptions that are being thrown from
JNI methods that aren’t currently declared”, “cleaning up JNI
exceptions (#252)”, “removed a few unused JNI methods” extracted re-
spectively from Conscrypt and Pljava). Therefore, we believe that the smell
types Unused Parameters, Too Much Clustering, Too Much Scattering, Hard
Coding Libraries, Not Handling Exceptions, Memory Management Mismatch and
Not Securing Libraries. should be considered in priority since their occurrence
seems to increase the risk of bug introduction. Both developers’ perception and



46 Abidi et al.

the empirical evidence presented in our previous study [6] are important re-
garding the impacts of the smells on the quality of multi-language systems.
Although both studies provide us with important insights about the impacts
of multi-language design smells, we believe that further research is required to
have more conclusive evidence.

We believe that the findings of this paper provide insights for the research
community in general, but also for developers, and any of those considering
the use of multi-language programming. Our results report that most of the
studied design smells are relevant i.e., Unused Method Implementation, Unused
Method Declaration, Not Securing Libraries, Memory Management Mismatch,
Unused Parameters, Not Handling Exceptions, and Too Much Clustering. We
also reported that the design smells present a negative impact on the soft-
ware quality attributes and that they are considered as harmful. Therefore,
we believe that developers should pay attention to the studied design smells.
Our results emphasize that in many situations, the participants reported that
they could consider refactoring occurrence of the studied design smells. Hence,
we believe that refactoring approaches should be considered to automatically
remove the occurrences of multi-language design smells.

6 Threats To Validity

In this section, we discuss the threats to the validity of our study [61].

Threats to Construct Validity These threats concern the relationship between
theory and observation. According to Fink, a survey allows to collect infor-
mation from or about people to describe, compare, or explain their knowledge
and behavior about a specific topic [13]. We followed guidelines in the coding
process of the open questions as described in section 3. Two of the authors
independently analysed the developers’ responses and performed the coding
process. The initial inter-rater agreement rate was 94.84%. We then resolved
the disagreements through discussions with the research team. Concerning the
measure of perception, we asked developers to report to us whether they per-
ceived a problem in the code shown to them. In addition, we asked them to
specify the smell name in order to understand whether or not they were able
to correctly identify the design smells studied. We are aware that surveys only
reflect a subjective perception of the problem, and might not fully capture the
extent to which the design smells could be relevant or harmful. Regarding the
sample of smells used in this survey, to mitigate any possible threats related to
the recall and-or precision of the detection approach, we manually validated
all the instances of design smells that were used in the survey. The validation
process was based on the definition of the smells and their related rules. We
validated that the code snippets presented to the developers follow the rules
introduced when defining and documenting the design smells [4,3,6]. Even if
not all the surveyed developers correctly identified the design smells presented
in this study, we still believe that these are concrete design smells and could
have negative impacts on the source code as reported in our previous study



Multi-language Design Smells: A Backstage Perspective 47

[6]. Our study is an internal validation of multi-language design smells that we
previously defined and cataloged. Thus, this may present a threat to validity.
However, this threat was mitigated by publishing our catalog in a pattern con-
ference. The catalog of design smells went through several rounds of validation
and most of the design smells presented in this paper were discussed and-or
reported by multi-language developers [4,3,41]. However, as future work, we
plan to contrast the developers’ perception and the empirical results obtained
from analyzing open source projects and also conduct interviews with develop-
ers to have better insights about why some developers misidentified the design
smell types. Another threat to validity could be related to the severity of the
smell occurrences presented in this study. We mitigated these threats by se-
lecting representative instances for each smell type that were discussed and
approved by the authors of the smells. We selected examples that are easy
to understand, not ambiguous with adequate documentation, and that follow
the simple rules related to the definition of the smells. We provided an equal
understanding of the smells. We used code examples that reflect commonly
used language features and libraries to make it easy to understand. We pro-
vided additional support and documentation to avoid additional bias related
to the nature and definition of the smell types so that developers can have an
equivalent understanding of the different types of smells.

Threats to Internal Validity One of the main threats with a survey is that
developers misunderstand the questions and–or possible answers. To minimise
this threat, we relied on the literature to extract the possible questions and
their answers (for close questions). We also relied on the literature to design
the whole study [47]. We provided, in the survey preamble, the definition of
all the terms used (e.g., quality attributes, multi-language systems, and de-
sign smells). For most of the survey questions, we allowed developers to select
a “null” option: “Other (please specify)” if they did not want to answer or
wanted to answer differently. Our surveys received a higher response rate than
the average response rate in software engineering surveys. This was because of
the closed survey, we sent personalized emails, with the developer name and
the project name. For the open survey, we also sent personalized messages
through LinkedIn. Such specific information increases the chance of contacted
developers responding to our email compared to emails with only generic con-
tents. Another reason is that we sent a reminder to developers after two weeks.
We have limited a possible bias effect by also showing source code elements
without smells to mitigate any bias that could be introduced by developers
who could have reported that they perceived the presence of smells even in
code not containing any smell. Also some of our results are resulting from
the general developers and not the original developer for the smell types Hard
Coding Libraries, Excessive Objects, and Not Caching Objects. For these design
smell types, our results reflect the perception from the perspective of general
developers.



48 Abidi et al.

Threats to External Validity These threats concern the generalisation of our
results. The results reported in this paper reflect the perception of specific
developers and may not generalize to all developers. Also, the impacts and
relevance of smells report the perception of the surveyed developers. Such
perception depends on the smell instances and could vary from one partici-
pant to another. In this study, we had to constrain our analysis to a limited
set of smell instances per survey. For the closed survey, we also presented to
each participant the smells existing in files he worked on. This may intro-
duce threats because not all the smells were presented to all the developers.
However, we are aggregating the results and reporting if the presented smells
were correctly identified by the developers. We mitigated the threats to ex-
ternal validity by diversifying the projects analysed. We have also targeted
professionals from different countries and backgrounds. We are reporting in
this study the perception of software developers in general but also those who
contributed to the smelly files. Therefore, we believe that our results could
be useful for developers working with JNI projects that contain similar occur-
rences of design smells. As we target only JNI systems, our results may not
generalize to all multi-language systems. However, our results raise awareness
about multi-language design smells in general and their impacts on software
quality. The results observed in this paper encourage further investigations
with other projects and developers to generalize the results of the perceived
relevance and severity of multi-language design smells.

Threats to Conclusion Validity They concern the relationship between treat-
ment and outcome. We diversified the keywords and tried to reach developers
with different backgrounds and skills. We included general developers but also
those who were involved in the development and maintenance of the studied
smells. In this paper, we report the results obtained from surveying developers.
We were careful to take into account the assumptions of the statistical test
used. We used non-parametric tests that do not require any assumption about
the data set distribution. To deal with the multiple testing problem, we applied
Bonferroni correction and computed its critical value. In this paper, we discuss
the results and provide justifications and explanations that are based on our
previous research studies and experience with the analysis of multi-language
systems [4,3,2,6].

Threats to Reliability Validity They concern the possibility to replicate our
study. We mitigate this threat by providing all the information needed to
reproduce this study. We discussed in Section 3 the tool used as well as the
methodology followed to perform this study. We also explained all the different
steps followed to collect and analyze the data17.

17 https://github.com/ResearchML/Replication_EMSE



Multi-language Design Smells: A Backstage Perspective 49

7 Related Work

Multi-language Systems Several studies in the literature discussed multi-
language systems. One of the very first study, if not the first, was by Linos et
al. [34]. They presented PolyCARE, a tool that facilitates the comprehension
and re-engineering of complex MLSs. PolyCARE seems to be the first tool
with an explicit focus on multi-language systems.

Kullbach et al. [29] also studied program comprehension for multi-language
systems. They claimed that program understanding for multi-language systems
is an essential activity during software maintenance and that it provides a large
potential for improving the efficiency of software development and maintenance
activities. They presented an approach to support the understandability of
multi-language systems.

Linos et al. [35] later argued that no attention has been paid to the is-
sue of measuring multi-language systems impact on program comprehension
and maintenance. They proposed Multi-language Tool (MT) a tool for un-
derstanding and managing multi-language programming dependencies. They
studied the MLPD concept (Multi-Paradigmatic Program Dependencies), to
capture dependencies that arise when entities from one programming language
interact with entities developed in another programming language.

Li and Tan [31], on the other hand, highlighted the risks caused by the ex-
ception mechanisms in Java, which can lead to failures in JNI implementation
functions and affect security. They studied the bugs caused by a lack of man-
agement of the exceptions. They argued that such issues negatively impact the
security of the system and introduce failures. They proposed a static analy-
sis tool to examine and report potential risks in JNI systems. They focused
mainly on JNI but their approach could be adapted to other FFIs, such as
Python/C and OCaml/C APIs. They proposed a static-analysis tool to report
potential risks in JNI systems. They also proposed a static framework, JET
[32], which extends Java’s exception checking mechanism to cover native code
to prevent failures and ease debugging.

Neitsch et al. [46] performed a qualitative study on five multi-language sys-
tems. They identified issues related to the deployment of multi-language sys-
tems and specified some common build patterns and anti-patterns for multi-
language systems that summarise the key problems related to the build of
multi-language systems, i.e., Filename Collision, Installation Required, Un-
verified Third Party Software, Ignored Error, Incorrect Dependencies, Build-
Free Extensibility, Object-Oriented Builds.

Design Smells Abidi et al. [6] performed an empirical study on 98 releases
of JNI systems and investigated prevalence and impacts of multi-language
design smells on software quality. They reported that multi-language smells
are prevalent in open-source projects and that they persist throughout the
releases of the systems. They also reported that some kinds of smells are more
prevalent than others. Their results suggest that multi-language smells can
often be more associated with bugs than files without smells.



50 Abidi et al.

Muse et al. [43] performed an empirical study on the prevalence and impact
of SQL design smells. They reported that SQL smells are prevalent and persist
in the studied open-source projects and that they have a weak association with
bugs.

Khomh et al. [22] investigated the impact of 13 design smells in 54 releases
of ArgoUML, Eclipse, Mylyn, and Rhino. They reported that classes with
design smells are more change- and fault-prone compared to classes without
design smells.

Saboury et al. [50] conducted a survival analysis of JavaScript design smells
and compared the time to fault between files with and without JavaScript
smells. They reported that JavaScript smells negatively impact the quality of
JavaScript projects.

Abbes et al. [1] investigated the impact of occurrences of design smells
in the developers’ understandability of systems while performing comprehen-
sion and maintenance tasks. They conducted three experiments to collect
data about the performance of developers and study the impact of Blob and
Spaghetti Code anti-patterns and their combinations. They concluded that the
occurrence of one anti-pattern does not significantly impacts comprehension
while the combination of the two design smells negatively impact program
comprehension.

Survey Studies Mayer et al. [38] performed a survey to investigate multi-
language development. Developers reported that multi-language systems in-
troduce benefits and challenges. However, in their study, they focused on the
identifiers and cross-language links between languages and did not cover the
challenges and developers’ practices for multi-language systems. This study
also targeted German developers mainly from the same company. However,
some of the questions were targeting concrete software project. Thus, respon-
dents in their survey may have reported on the same project.

Yamashita et al. [60] conducted a survey aimed at investigating developers
knowledge about design smells in mono-language systems and their perceived
criticality. They surveyed a total of 85 professional developers and reported
that 32% of the participants stated that they did not know about design smells.
They reported that the perceived criticality differs from one type of design
smell to the other, and that the majority of the participants were moderately
concerned by design smells.

Palomba et al. [47] conducted a survey aimed at providing evidence on
how developers perceive design smells. They surveyed master’s students, gen-
eral developers, but also original developers who contributed to the smelly
files. They reported that some design smells instances are generally not per-
ceived by developers as containing a design or implementation problem. Their
results also suggest that developers’ experience plays an important role in the
identification of design smell instances.

Borrelli et al. [10] recently documented seven types of smells for video
games. They proposed UnityLinter, a static analysis tool that detects occur-
rences of video games design smells. They also surveyed 68 practitioners. They



Multi-language Design Smells: A Backstage Perspective 51

reported that developers are concerned by performance and behavior issues re-
lated to the video game. However, they were less concerned by maintainability
issues.

Xu et al. [58] conducted an open and a closed survey targeting profes-
sional developers but also original developers that contributed to the studied
systems. They investigated the reasons behind library reuse and library re-
implementation. They reported that library reuse results mainly from situa-
tions where developers were initially aware and familiar with the library. For
the library re-implementation, they reported situations where the used library
method is deprecated or a small part of the library, or the library dependencies
are complex.

Arcoverde et al. [7] investigated how developers react to the presence of de-
sign smell occurrences. They reported through their survey that design smells
often remain in the source code for a long period of time. They reported that
one of the main reasons for postponing the refactoring of design smells is to
avoid API modifications.

In contrast to the studies discussed in this section, our study presents
the first survey studying the relevance and impacts of multi-language design
smells on multi-language software quality. We believe that our study could help
developers and researchers improving the quality of multi-language systems
and to conduct further research.

8 Conclusion

We presented in this paper the results of our survey of professional developers
that aimed to access their perception of the prevalence and severity of multi-
language design smells. We also reported about developers’ perception of the
impact of the design smells on some quality attributes. We selected respondents
from different backgrounds to diversify the population under study.

Our results show that in general developers consider the studied multi-
language design smells to be reflective of design and implementation prob-
lems. We found that the main reasons behind the introduction of multi-
language design smells are: refactoring and maintenance, continuous develop-
ment (i.e., perform regular development tasks), easy way of implementation,
lack of knowledge, and specific implementation/design choices. Our results
show that multi-language design smells are perceived in general to negatively
impact all the studied quality attributes. The design smells perceived as the
most harmful are: Not Handling Exceptions, Assuming Safe Return Value, Lo-
cal References Abuse, Memory Management Mismatch, and Excessive Inter-
language Communication. Our results also show that in general, the developers
would consider refactoring the design smells studied in this paper. These find-
ings confirm and complement our earlier empirical evidence [6] and highlight
the importance of further research on the impacts of multi-language design
smells.



52 Abidi et al.

In future work, we plan to (1) study the correlation between bug-proneness
and the degree of harmfulness of the design smells, (2) contrast the perception
of the prevalence of design smells versus the prevalence in open source projects
(3) identify more challenges and issues related to multi-language systems, (4)
provide a taxonomy of bugs related to multi-language systems, and (5) study
the relationship between multi-language design smells and the taxonomy of
bugs.

Acknowledgment

Our sincere gratitude goes to the anonymous respondents who answered the
open and closed surveys. We also thank the anonymous reviewers for their
comments and suggestions that significantly improved this paper.

References

1. Abbes, M., Khomh, F., Gueheneuc, Y.G., Antoniol, G.: An empirical study of the
impact of two antipatterns, blob and spaghetti code, on program comprehension. In:
Software maintenance and reengineering (CSMR), 2011 15th European conference on,
pp. 181–190. IEEE (2011)

2. Abidi, M., Grichi, M., Khomh, F.: Behind the scenes: developers’ perception of multi-
language practices. In: Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering, pp. 72–81. IBM Corp. (2019)

3. Abidi, M., Grichi, M., Khomh, F., Guéhéneuc, Y.G.: Code smells for multi-language
systems. In: Proceedings of the 24th European Conference on Pattern Languages of
Programs, p. 12. ACM (2019)

4. Abidi, M., Khomh, F., Guéhéneuc, Y.G.: Anti-patterns for multi-language systems. In:
Proceedings of the 24th European Conference on Pattern Languages of Programs, p. 42.
ACM (2019)

5. Abidi, M., Openja, M., Khomh, F.: Multi-language design smells: A backstage per-
spective. In: Proceedings of the 17th International Conference on Mining Software
Repositories, pp. 615–618 (2020)

6. Abidi, M., Rahman, M.S., Openja, M., Khomh, F.: Are multi-language design smells
fault-prone? an empirical study. ACM Transactions on Software Engineering and
Methodology (TOSEM) 30(3), 1–56 (2021)

7. Arcoverde, R., Garcia, A., Figueiredo, E.: Understanding the longevity of code smells:
preliminary results of an explanatory survey. In: Proceedings of the 4th Workshop on
Refactoring Tools, pp. 33–36 (2011)

8. Baltes, S., Diehl, S.: Worse than spam: Issues in sampling software developers. In:
Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 1–6 (2016)

9. Binkley, D.: Source code analysis: A road map. In: Future of Software Engineering,
2007. FOSE ’07 (2007)

10. Borrelli, A., Nardone, V., Di Lucca, G.A., Canfora, G., Di Penta, M.: Detecting video
game-specific bad smells in unity projects. In: Proceedings of the 17th International
Conference on Mining Software Repositories, pp. 198–208 (2020)

11. Burow, B.D.: Mixed language programming. In: Computing in High Energy Physics’
95: CHEP’95, pp. 610–614. World Scientific (1996)

12. Emerson, P.: The original borda count and partial voting. Social Choice and Welfare
40(2), 353–358 (2013)

13. Fink, A.: The survey handbook, vol. 1. Sage (2003)
14. Flores, E., Barrón-Cedeño, A., Rosso, P., Moreno, L.: Towards the detection of cross-

language source code reuse. In: Proceedings of the 16th International Conference on
Natural Language Processing and Information Systems. Springer-Verlag (2011)



Multi-language Design Smells: A Backstage Perspective 53

15. Fontana, F.A., Braione, P., Zanoni, M.: Automatic detection of bad smells in code: An
experimental assessment. Journal of Object Technology 11(2), 5–1 (2012)

16. Goedicke, M., Neumann, G., Zdun, U.: Object system layer. 5th European Conference
on Pattern Languages of Programms (EuroPLoP ’2000) (2000)

17. Goedicke, M., Zdun, U.: Piecemeal legacy migrating with an architectural pattern lan-
guage: A case study. Journal of Software Maintenance and Evolution: Research and
Practice 14(1), 1–30 (2002)

18. Gravetter, F.: Forzano, lab research methods for the behavioral sciences (2012)
19. Harman, M.: Why source code analysis and manipulation will always be important. In:

2010 10th IEEE Working Conference on Source Code Analysis and Manipulation, pp.
7–19 (2010)

20. Hunt, J.: Java for Practitioners: An Introduction and Reference to Java and Object
Orientation, 1st edn. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1999)

21. Khomh, F., Di Penta, M., Gueheneuc, Y.G.: An exploratory study of the impact of code
smells on software change-proneness. In: Reverse Engineering, 2009. WCRE’09. 16th
Working Conference on, pp. 75–84. IEEE (2009)

22. Khomh, F., Di Penta, M., Guéhéneuc, Y.G., Antoniol, G.: An exploratory study of
the impact of antipatterns on class change-and fault-proneness. Empirical Software
Engineering 17(3), 243–275 (2012)

23. Khomh, F., Guéhéneuc, Y.G.: Do design patterns impact software quality positively? In:
Software Maintenance and Reengineering, 2008. CSMR 2008. 12th European Conference
on, pp. 274–278. IEEE (2008)

24. Khomh, F., Vaucher, S., Guéhéneuc, Y.G., Sahraoui, H.: A bayesian approach for the
detection of code and design smells. In: Quality Software, 2009. QSIC’09. 9th Interna-
tional Conference on, pp. 305–314. IEEE (2009)

25. Kienle, H.M., Kraft, J., Müller, H.A.: Software reverse engineering in the domain of com-
plex embedded systems. In: Reverse Engineering-Recent Advances and Applications.
InTech (2012)

26. Kochhar, P.S., Wijedasa, D., Lo, D.: A large scale study of multiple programming lan-
guages and code quality. In: 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 563–573. IEEE (2016)

27. Kondoh, G., Onodera, T.: Finding bugs in java native interface programs. In: Proceed-
ings of the 2008 International Symposium on Software Testing and Analysis, ISSTA ’08,
pp. 109–118. ACM, New York, NY, USA (2008)

28. Kontogiannis, K., Linos, P., Wong, K.: Comprehension and maintenance of large-scale
multi-language software applications. In: Software Maintenance, 2006. ICSM’06. 22nd
IEEE International Conference on, pp. 497–500. IEEE (2006)

29. Kullbach, B., Winter, A., Dahm, P., Ebert, J.: Program comprehension in multi-
language systems. In: Reverse Engineering, 1998. Proceedings. Fifth Working Con-
ference on, pp. 135–143. IEEE (1998)

30. Lee, B., Hirzel, M., Grimm, R., McKinley, K.S.: Debug all your code: Portable mixed-
environment debugging. SIGPLAN Not. 44(10), 207–226 (2009)

31. Li, S., Tan, G.: Finding bugs in exceptional situations of jni programs. In: Proceedings
of the 16th ACM Conference on Computer and Communications Security, CCS ’09, pp.
442–452. ACM, New York, NY, USA (2009)

32. Li, S., Tan, G.: Jet: Exception checking in the java native interface. In: Proceedings
of the 2011 ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, pp. 345–358. ACM (2011)

33. Liang, S.: Java Native Interface: Programmer’s Guide and Reference, 1st edn. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

34. Linos, P.K.: Polycare: A tool for re-engineering multi-language program integrations.
In: Proceedings of First IEEE International Conference on Engineering of Complex
Computer Systems. ICECCS’95, pp. 338–341. IEEE (1995)

35. Linos, P.K., Chen, Z.h., Berrier, S., O’Rourke, B.: A tool for understanding multi-
language program dependencies. In: Program Comprehension, 2003. 11th IEEE Inter-
national Workshop on, pp. 64–72. IEEE (2003)

36. Lippert, M., Roock, S.: Refactoring in large software projects: performing complex re-
structurings successfully. John Wiley & Sons (2006)



54 Abidi et al.

37. Long, F., Mohindra, D., Seacord, R.C., Sutherland, D.F., Svoboda, D.: Java coding
guidelines: 75 recommendations for reliable and secure programs. Addison-Wesley
(2013)

38. Mayer, P., Kirsch, M., Le, M.A.: On multi-language software development, cross-
language links and accompanying tools: A survey of professional software developers.
Journal of Software Engineering Research and Development 5 (2017)

39. Mayer, P., Schroeder, A.: Cross-language code analysis and refactoring. In: Source Code
Analysis and Manipulation (SCAM), 2012 IEEE 12th International Working Conference
on, pp. 94–103. IEEE (2012)

40. Mouna, A., Foutse, K., Guéhéneuc, Y.G.: Anti-patterns for multi-language systems. In:
24th European Conference on Pattern Languages of Programs (EuroPLoP ’19), July
3–7, 2019, Irsee, Germany. ACM (2019)

41. Mouna, A., Manel, G., Foutse, K.: Behind the scenes: Developers’ perception of multi-
language practices. In: 29th Annual International Conference on Computer Science and
Software Engineering (CASCON’2019). ACM (2019)

42. Mouna, A., Manel, G., Foutse, K., Yann-Gaël, G.: Code smells for multi-language sys-
tems. In: 24th European Conference on Pattern Languages of Programs (EuroPLoP
’19), July 3–7, 2019, Irsee, Germany. ACM (2019)

43. Muse, B.A., Rahman, M.M., Nagy, C., Cleve, A., Khomh, F., Antoniol, G.: On the
prevalence, impact, and evolution of sql code smells in data-intensive systems. In:
Proceedings of the 17th International Conference on Mining Software Repositories, pp.
327–338 (2020)

44. Mushtaq, Z., Rasool, G.: Multilingual source code analysis: State of the art and chal-
lenges. In: Open Source Systems & Technologies (ICOSST), 2015 International Confer-
ence on, pp. 170–175. IEEE (2015)

45. Mushtaq, Z., Rasool, G.: Multilingual source code analysis: State of the art and
challenges. In: 2015 International Conference on Open Source Systems Technologies
(ICOSST), pp. 170–175 (2015)

46. Neitsch, A., Wong, K., Godfrey, M.W.: Build system issues in multilanguage software.
In: Software Maintenance (ICSM), 2012 28th IEEE International Conference on, pp.
140–149. IEEE (2012)

47. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A.: Do they really smell
bad? a study on developers’ perception of bad code smells. In: 2014 IEEE International
Conference on Software Maintenance and Evolution, pp. 101–110. IEEE (2014)

48. Pfeiffer, R.H., Wąsowski, A.: Texmo: A multi-language development environment. In:
Proceedings of the 8th European Conference on Modelling Foundations and Applica-
tions, ECMFA’12, pp. 178–193. Springer-Verlag, Berlin, Heidelberg (2012)

49. Romano, D., Raila, P., Pinzger, M., Khomh, F.: Analyzing the impact of antipatterns
on change-proneness using fine-grained source code changes. In: Reverse Engineering
(WCRE), 2012 19th Working Conference on, pp. 437–446. IEEE (2012)

50. Saboury, A., Musavi, P., Khomh, F., Antoniol, G.: An empirical study of code smells in
javascript projects. In: 2017 IEEE 24th international conference on software analysis,
evolution and reengineering (SANER), pp. 294–305. IEEE (2017)

51. Sheskin, D.J.: Handbook of parametric and nonparametric statistical procedures. crc
Press (2020)

52. Soh, Z., Yamashita, A., Khomh, F., Guéhéneuc, Y.G.: Do code smells impact the effort
of different maintenance programming activities? In: 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp.
393–402. IEEE (2016)

53. Synytskyy, N., Cordy, J.R., Dean, T.R.: Robust multilingual parsing using island gram-
mars. In: Proceedings of the 2003 Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’03, pp. 266–278. IBM Press (2003)

54. Tan, G., Chakradhar, S., Srivaths, R., Wang, R.D.: Safe Java Native Interface. In: In
Proceedings of the 2006 IEEE International Symposium on Secure Software Engineering,
pp. 97–106 (2006)

55. Tan, G., Croft, J.: An empirical security study of the native code in the jdk. In: Pro-
ceedings of the 17th Conference on Security Symposium, SS’08, pp. 365–377. USENIX
Association, Berkeley, CA, USA (2008)



Multi-language Design Smells: A Backstage Perspective 55

56. Tomassetti, F., Torchiano, M.: An empirical assessment of polyglot-ism in github. In:
Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, EASE ’14, pp. 17:1–17:4. ACM, New York, NY, USA (2014)

57. Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A., Poshy-
vanyk, D.: When and why your code starts to smell bad. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1, pp. 403–414. IEEE (2015)

58. Xu, B., An, L., Thung, F., Khomh, F., Lo, D.: Why reinventing the wheels? an empirical
study on library reuse and re-implementation. Empirical Software Engineering 25(1),
755–789 (2020)

59. Yamashita, A., Moonen, L.: Do code smells reflect important maintainability aspects?
In: Software Maintenance (ICSM), 2012 28th IEEE International Conference on, pp.
306–315. IEEE (2012)

60. Yamashita, A., Moonen, L.: Do developers care about code smells? an exploratory sur-
vey. In: 2013 20th Working Conference on Reverse Engineering (WCRE), pp. 242–251.
IEEE (2013)

61. Yin, R.K.: Applications of Case Study Research Second Edition (Applied Social Re-
search Methods Series Volume 34). {Sage Publications, Inc} (2002)

62. Zhang, C., Budgen, D.: What do we know about the effectiveness of software design
patterns? IEEE Transactions on Software Engineering 38(5), 1213–1231 (2012)

9 Appendix

We provide in this section the details about the detection results and the
smell occurrences detected in our subject systems presented in Table 1. We
also highlight the total number of responses sent and received from running
the survey.

Table 11 provides the smells occurrences detected when running MLSInspect
[6] on the 270 snapshots of our subject systems described in section 3. The
columns reported in Table 11 reflects the subject systems analysed. The first
row (#Snap) reports the number of snapshots in each system, while the rest
of the rows describe the occurrences of smells detected in each system.

Table 11: Overview of the Detected Smell Occurrences in the Studied Systems

Projects Frostwire OpenDDS conscrypt javacpp jna pljava realm-java rocksdb
#Snap 18 58 32 30 32 35 29 36
NHE 32 262 42 0 6 35 134 63
UP 2206 1935 266 9 193 540 493 786
NSL 103 218 53 30 5 2 28 68
ASRV 16 219 42 0 1 0 45 63
LRA 0 43 22 0 6 7 0 19
NRP 87 44 42 0 5 2 0 27
MM 0 0 21 0 5 28 22 28
HCL 0 0 0 7 0 0 0 21
EO 0 0 0 0 0 0 0 0
NCO 0 0 0 0 0 0 0 4
TMC 37 246 62 67 12 135 203 480
TMS 0 577 0 349 16 530 114 798
EXC 32 0 44 257 10 61 174 287
UMD 55 264 69 124 1 574 54 138
UMI 15 107 0 0 1 37 45 0



56 Abidi et al.

Table 12 summarizes the total number of surveys that we sent, the number
of answers received, and the number of answers we kept for the analysis of this
paper. Note that we did not keep answers that contain information related
only to the background section as those participants did not fill any of the
sections related to the purpose of this study. Another important point is that
in this study, we initially aimed to capture results for nine systems as stated
in our initial protocol [5]. However, the results we received are only for eight
systems as shown in Table 12.

Table 12: Survey Responses Overview

Survey Total Sent Total Answers Received Total Answers Kept
Open 500 216 132
Frostwire 10 4 3
OpenDDS 15 5 5
Conscrypt 34 8 7
JavaCpp 9 4 4
JNA 5 2 1
Pljava 11 6 4
Realm 30 9 6
Rocksdb 123 12 9
vlc-android 19 0 0
java-smt 7 0 0


