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Abstract During software evolution, inexperienced developers may introduce
design anti-patterns when they modify their software systems to fix bugs or
to add new functionalities based on changes in requirements. Developers may
also use design patterns to promote software quality or as a possible cure for
some design anti-patterns. Thus, design patterns and design anti-patterns are
introduced, removed, and mutated from one another by developers.

Many studies investigated the evolution of design patterns and design anti-
patterns and their impact on software development. However, they investigated
design patterns or design anti-patterns in isolation and did not consider their
mutations and the impact of these mutations on software quality. Therefore,
we report our study of bidirectional mutations between design patterns and
design anti-patterns and the impacts of these mutations on software change-
and fault-proneness.

We analyzed snapshots of seven Java software systems with diverse sizes,
evolution histories, and application domains. We built Markov models to cap-
ture the probability of occurrences of the different design patterns and de-
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sign anti-patterns mutations. Results from our study show that (1) design
patterns and design anti-patterns mutate into other design patterns and–or
design anti-patterns. They also show that (2) some change types primarily
trigger mutations of design patterns and design anti-patterns (renaming and
changes to comments, declarations, and operators), and (3) some mutations of
design anti-patterns and design patterns are more faulty in specific contexts.

These results provide important insights into the evolution of design pat-
terns and design anti-patterns and its impact on the change- and fault-proneness
of software systems.

Keywords Design smells · Design patterns · Anti-patterns · Fault-proneness ·
Change-proneness · Markov Chain

1 Introduction

1.1 Background and Motivation

Quality assurance is one of the most critical challenges in software develop-
ment and evolution [1]. Under tight deadlines and other business constraints,
developers may take poor design or coding decisions and may follow bad prac-
tices. These poor design decisions and bad coding practices are collectively
called “smells” [2,3].

Smells are divided into several different categories [4], such as code smells,
design smells, lexical smells, etc. Code smells include low-level problems in
the source code that may be symptoms of poor coding practices [5,6]. Design
smells include design anti-patterns that describe poor solutions to recurring
design problems. Design anti-patterns have been reported to make software
development and evolution difficult [7]. They affect program comprehension
[8] and increase change- and fault-proneness [7].

Opposite to design anti-patterns, design patterns are good solutions to
recurring design problems, which promote code reuse and increase reliability,
readability, and flexibility [1]. Gamma et al. [1] suggested using specific design
patterns to ease evolution and increase reuse and flexibility. Studies showed
that design patterns often increase the quality of software systems (e.g., [9]).
Yet, a few studies showed that some design patterns can decrease some quality
attributes [10].

Recent studies [11–13] showed the existence of relationships between design
patterns and design anti-patterns. Such relationships can help developers to
understand their systems better and simplify development and evolution [11].
Yet, no study considered that design patterns sometimes (d)evolve into design
anti-patterns and analysed the impact of such mutations on software quality.

Because design anti-patterns negatively affect software quality while design
patterns improve it, understanding the evolution of design patterns and design
anti-patterns into one another could help developers identify the riskiest design
anti-patterns, avoid introducing design anti-patterns, and–or avoid evolving
design patterns into such design anti-patterns.
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1.2 Research problem

In previous works [11,14], we investigated the static relationships between de-
sign anti-patterns and design patterns and how these relationships evolve in
time. We studied the relationships between classes playing roles in design pat-
terns and design anti-patterns and reported that static relationships between
design patterns and design anti-patterns exist but they are temporary. We
also showed that classes playing roles in design anti-patterns and having rela-
tionships with design patterns are more change-prone but are less fault-prone
than other classes.

In another previous work, [10], we also showed that the design of systems
degrades over time, presumably due to the removal (or lack of use) of design
patterns and the introduction of design anti-patterns.

Thus, these studies (and others) considered design patterns and design anti-
patterns as unique, atomic entities in each releases of the studied systems.
Yet, during software evolution, design (anti)patterns do evolve, appearing,
disappearing, and mutating into one another. Understanding this evolution
of design patterns and design anti-patterns across releases, and in particular
their mutations into one another, could help developers avoid mutations that
negatively impact software quality while promoting those that improve it.

1.3 Contributions

This study is a quasi-replication of a previous study by Jaafar et al. [14]. Some
of the research questions in this paper are similar to those in the previous study
[14], which pertain to:

– Computing the probability of design anti-patterns mutations using Markov
models.

– Comparing classes with and without design anti-patterns and their fault-
proneness.

Moreover, in this study, we consider both design patterns and design anti-
pattern mutations during software evolution. We examine the impacts of de-
sign patterns and design anti-patterns mutations on change- and fault-proneness.
We investigate seven open-source Java software systems to answer to the the
following five research contributions:

1. We study how design patterns and design anti-patterns mutate over time
using Markov models.

2. We study the types of changes that occur during design anti-patterns mu-
tations.

3. We study the impact of these mutations on fault-proneness.
4. We study the types of changes that lead to design patterns and design

anti-patterns mutations.
5. We study the most fault-prone transitions between design patterns and

design anti-patterns.
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We use seven different open-source systems of different sizes and from dif-
ferent application domains: Apache Ignite1, Apache Solr 2, Eclipse IDE 3,
Matsim 4, Mule 5, Nuxeo 6, and Ovirt 7.

We consider thirteen design anti-patterns from [15] and eight design pat-
terns [1]. For the detection of design anti-patterns and design patterns, we
use DECOR [16] and DeMIMA [17]. We first detect the occurrences of design
anti-patterns and design patterns in all the studied releases of the systems and
then investigate the types of mutations: persistent, deleted, introduced, and
changed between these snapshots.

Second, we build Markov models [18] to compute the probability values of
such mutations. We build one Markov model per studied system. In the models,
design anti-patterns and design patterns are nodes while the probabilities of
their mutations into one another label the edges between nodes. We compute
the probability values by analyzing all the releases of the software systems
during the considered period of time.

Third, we use the SZZ algorithm [19] to find fault-inducing commits and in-
vestigate the impact of design patterns and–or design anti-patterns mutations
on the fault-proneness of classes.

Fourth, we define thirteen types of change and study them to discover
the kinds of changes leading to mutations between design patterns and design
anti-patterns. We also study the effects of the change types on fault-proneness.

1.4 Research Questions

We use the seven open-source Java software systems to answer the following
four research questions:

– RQ1: Do design patterns and–or design anti-patterns mutate during soft-
ware evolution and what is the probability of the mutations? We build
Markov models [18] showing which design patterns and–or design anti-
patterns mutate into one another during a studied period of evolution.
We consider both appearance and disappearance of design patterns and
design anti-patterns. We observe that both design patterns and design
anti-patterns mutate in the systems. We compute the probabilities of all
possible mutations using the Markov models. We also present the most
frequent mutations of design patterns and design anti-patterns along the
following four mutation types:

1. Design anti-patterns to some other design anti-patterns;

1 https://ignite.apache.org/
2 http://lucene.apache.org/solr/
3 https://www.eclipse.org/
4 https://matsim.org/
5 http://www.mulesoft.org/
6 https://www.nuxeo.com/
7 https://www.ovirt.org/
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2. Design anti-patterns to design patterns;
3. Design patterns to design anti-patterns;
4. Design patterns to some other design patterns.

– RQ2: What types of changes lead to mutations between design patterns
and design anti-patterns? Design patterns and design anti-patterns evolve
through different types of changes as the system evolves. We define thir-
teen change types and investigate classes experiencing these change types
and participating in design patterns and–or design anti-patterns. We see
that different types of changes occur during the evolution of software sys-
tems and lead to different mutations. We study the impact of the types of
changes on mutations between design patterns and–or design anti-patterns.
We present the most prevalent type of changes leading to mutations.

– RQ3: What is the fault-proneness of mutated design patterns and anti-
patterns and what transitions lead to more fault-prone mutations? Design
patterns and design anti-patterns may frequently mutate in other types of
patterns during the evolution process. We study whether such mutations
are risky regarding fault-proneness. We also present the riskiest transitions
among design patterns and design anti-patterns. We observe that classes
participating in mutated design anti-patterns are more fault-prone than
classes involved in mutated design patterns. We also see that mutations
between design anti-patterns and design patterns are more faulty than
other mutations.

– RQ4: Do specific types of changes lead to increased fault-proneness during
mutations? We investigate whether the types of changes to design pat-
terns and design anti-patterns impact fault-proneness. We examine faulty-
classes and check whether a mutation occurred during the evolution of these
classes. We also examine all changes experienced by the classes during the
evolution of the systems. We observe that some of the change types make
the systems more fault-prone. We study whether specific types of changes
that cause the mutations between design patterns and design anti-patterns
are more fault-prone.

The results of these four research questions show that there is a high prob-
ability for some design patterns and design anti-patterns to mutate to others
types of design patterns and design anti-patterns. The changes that lead to
the mutations are mostly structural changes, in particular the addition of large
number of attributes or long methods. Results also show that some mutations
increase the fault-proneness of the analysed software systems.

1.5 Organization

The rest of the paper is organized as follows: Section 2 describes the related
work. Section 3 presents the methodology of our study. Section 4 reports its
experimental setup. Section 5 presents its results. Section 6 discusses the re-
sults and Section 7 threats to their validity. Finally, Section 8 concludes the
paper with future work.
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2 Related Work

2.1 Design Anti-pattern and Detection

Webster et al. [20] describes design anti-pattern as a solution to a problem
that is used frequently but negatively affects software quality. Riel et al. [21]
proposed 61 heuristics of good object-oriented programming that can be used
to manually assess a program quality for improving its design and implemen-
tation. These heuristics are similar to code smells. Later, Brown et al. [15]
introduced 40 types of design anti-patterns that form the basis of design anti-
patterns detection approaches [5,22,16,23].

Several approaches have been proposed to detect design anti-patterns. Van
Emden et al. [5] developed JCosmo to visualize the code layout and locate anti-
patterns. JCosmo uses primitives and rules to detect design anti-patterns while
parsing the source code into an abstract model (similar to the Famix meta-
model [24]). The goal is to evaluate code quality and help developers to do
refactoring. Marinescu et al. [25] combined detection strategies and additional
information collected from the documentation of problematic structures in the
histories of software systems to improve the detection results.

Settas et al. [23] proposed Bayesian network-based approach to improve
the detection of design anti-patterns. Their approach leverages probabilistic
knowledge, which contains the relationships of design anti-patterns regarding
their causes, symptoms, and consequences. iPlasma [22] detects design anti-
patterns by calculating metrics on C++ or Java source code and by applying
some rules that combine the metrics.

In this paper, we use DECOR to specify and detect design anti-patterns
because of its higher detection accuracy [16] and wider domain coverage. We
present a detailed description of DECOR in Section 3.1.

2.2 Design Pattern and Detection

Design patterns in object-oriented software development and their detection
have been well-studied in the past two decades [1,26]. Kramer et al. [26] in-
troduced an approach to detect design information directly from C++ header
files. Design patterns are represented as Prolog rules that query this design
information. Their approach detects five structural design patterns: Adapter,
Bridge, Composite, Decorator, and Proxy.

Vokač et al. [12] proposed an approach scoring the similarity between the
graph of a design pattern and the graph of a system to identify classes partic-
ipating in this design pattern. Iacob et al. [27] identified proven solutions for
recurring design problems using design workshops and system analysis. During
design workshops, teams of 3-5 developers designed systems while considering
design issues. Then, they analysed a set of systems to recognize how developers
should consider design problems in the implementation of existing solutions.
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In this paper, we use DeMIMA to specify and detect design patterns be-
cause of its higher detection accuracy [17], which is described in Section 3.2.

2.3 Design Anti-pattern and Design Pattern Evolution and their Impact

Several studies investigated both design anti-pattern and design-pattern evo-
lution. Bieman et al. [28] claimed that there is a relative stability in classes
participating in design patterns compared to other classes. They showed that
large classes are more change-prone than other classes. Vokač et al. [12] dis-
cussed how different design patterns have different impact on fault-proneness.
They studied a large C++ industrial system to prove their claim. Gatrell et
al. [29] demonstrated that pattern-based classes are more change-prone than
other classes. Olbrich et al. [30] focused on the historical data of Lucene and
Xerces over several years and showed that Blob classes and classes subject to
Shotgun Surgery are more change-prone than other classes.

Khomh et al. [7] investigated the impact of code smells on the change-
proneness of classes. They also studied the influence of design anti-patterns on
change- and fault-proneness. They considered 13 design anti-patterns in 54 re-
leases of ArgoUML, Eclipse, Mylyn, and Rhino, and analyzed the probability
of classes changing to fix a fault. Their results showed that classes participat-
ing in design anti-patterns were significantly more likely to be changed than
other classes. This study also investigated two types of changes experienced
by classes with design anti-patterns: structural and non-structural changes.
Structural changes can modify the class interface while non-structural ones
change method bodies. They concluded that structural changes were more
likely to occur in classes participating in design anti-patterns.

Yamashita and Moonen [31] reported that developers cannot fully evaluate
the overall maintainability of a software system with code smells alone. They
argued that different approaches should be combined to achieve complete and
accurate evaluations of software maintainability. Taba et al. [32] claimed that
information about design anti-patterns improves the accuracy of fault predic-
tion models. Jaafar et al. [11] empirically studied the relationships between
design anti-patterns and design patterns. They showed that some design anti-
patterns have relationships with design patterns while others do not.

3 Methodology

We now describe the general methodology of our study, shown in Figure 1,
which includes the main steps of design (anti-)pattern detection, classification
of change types, building Markov models, and detection of faulty classes.

We first extract the source code of the studied systems in snapshots taken
every 500 commits in their Git repositories. Then, we detect design anti-
patterns and design patterns in all the snapshots of the systems. We then
create Markov models based on the detected design anti-patterns and design



8 Zeinab (Azadeh) Kermansaravi et al.

patterns to analyze their behaviors during evolution. We also identify change
types and faulty classes throughout the period of evolution that we analyzed.
We study all the changed types that lead to fault(s) during evolution. We
explain each step in details in the following sub-sections.

Git Repositories

Detecting 
Design anti-patterns

Detecting 
Design-patterns

Detecting 
Linguistic anti-patterns

Analyzing 
Fault-proneness

Building 
the Markov Model RQ1

Identifying 
Change Types

RQ2

RQ3

RQ4

RQ5

Fig. 1 Schematic diagram of the methodological steps of the study

3.1 Detecting Anti-patterns

We use Defect DEtection for CORection Approach (DECOR) [16] to detect
occurrences of design anti-patterns. DECOR offers a domain-specific language
to automatically generate design-defect detection algorithms, including design
anti-patterns. DECOR uses the Patterns and Abstract-level Description Lan-
guage meta-model (PADL) [17] and the Primitive, Operators, and Metrics
framework (POM) [33] to detect design anti-patterns in object-oriented sys-
tems. The output of DECOR is a list of classes and their roles (if any) in
occurrences of design anti-patterns. Moha et al. [16] reported that DECOR
achieves 100% recall while having 31% precision rate in the worst case with
an average greater than 60%.

A domain-specific language is more flexible than ad hoc algorithms [16]
because domain experts (i.e., developers) can modify the detection rules man-
ually using high-level abstractions, considering the contexts, environments,
and characteristics of the analyzed systems. PADL [17] is a meta-model to de-
scribe object-oriented systems at different abstraction levels while POM [33]
is a PADL-based framework that implements more than 60 metrics.
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3.2 Detecting Design patterns

We use the Design Motif Identification Multilayered Approach (DeMIMA)
[17] to detect occurrences of design patterns. DeMIMA traces design motifs
(the micro-architecture describing the solutions of the design patterns) in the
source code. It discovers idioms relevant to binary class relationships and then
provide an idiomatic model of the source code. The model helps to identify
design motifs to create a design model of the system. DeMIMA can recover
idioms related to both the relationships among classes and design motifs.

DeMIMA uses explanation-based constraint programming to identify oc-
currences of design motifs using the roles and relationships describing the
motifs in PADL models of systems. It reports the micro-architectures that are
occurrences of the motifs, including approximations of the motifs. The output
of DeMIMA is a list of classes and their roles (if any) in the occurrences of
design patterns. Guéhéneuc and Antoniol [17] report that DeMIMA achieves
100% recall and 34% precision.

3.3 Building Mutation Model

We build a Markov model [18] for each studied system to show the mutations
between design anti-patterns and design patterns during evolution. For each
system, we consider all the patterns whose occurrences we found in its snap-
shots as nodes in its Markov model. A Markov model shows the set of all
possible mutations for one pattern during the evolution of the system.

First, we obtain two files from two consecutive snapshots of a system, C0

and C1, which contain all the occurrences of design patterns and design anti-
patterns in each class of each snapshot. Then, the Markov transition matrix
of these two files is a square matrix describing the probabilities of one design
anti-pattern and–or design pattern mutating into another. Each row contain
the probabilities of mutating from one pattern to all the others. Second, we
compare the next two snapshots, C1 and C2, and repeat this algorithm up
to snapshots Cn−1 and Cn. Then, we sum up all the mutation probabilities
for one given pattern into all the others. We report the averaged summed
mutation probabilities divided by the total number of each row. The sum of
all the probabilities from any pattern to the others is equal to one.

For an example, Figure 2 shows a Markov model whose nodes are design
anti-patterns and design patterns and edges represent mutations from one
pattern to another. Edges are labeled with the probabilities of the mutation
from the source patterns to its mutated patterns. This Markov model shows
the mutations of the Builder design pattern across the snapshots of Matsim.

3.4 Analyzing Fault-proneness

We use the SZZ algorithm [19] to identify commits that introduce faults in the
systems, i.e., fault-inducing commits, and thus faulty classes in the system
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Bu

LM

Cm

Cp

Sink

De 0.665

0.003

0.042

0.169

0.076

0.042

Fig. 2 Builder (Bu) mutation among the different revisions of Matsim.

snapshots. For each system, we first apply heuristics [34] to link commits
to faults. We use regular expressions to detect fault-IDs in the commit logs.
Developers use different conventions for these IDs in their systems so, to ensure
accuracy, we tune our heuristics on our dataset incrementally and manually.

Given a fault F in a system, we extract from its history the files that fixed
the fault (fault-fixing files) using git diff. Then, we retrieve the modified
and deleted lines from the fault-fixing files. The SZZ algorithm assumes that
prior commits that modified these lines are fault-inducing commits.

To identify such prior commits, for each fault-fixing files, we apply git

blame to retrieve a list of previous commits that modified these files. We
filter commits whose submission date is later than the fault creation date. We
consider the remaining commits as inducing the fault B.

For any F , the SZZ algorithm returns a list of commit IDs and fault-
inducing files pertaining to F . We then use regular expressions to map the
object-oriented classes composing the systems with the fault-inducing files.

3.5 Identifying Change Types

Different types of changes can affect software systems with different impacts
on fault-proneness. For example, changes to comments are less likely to lead
to faults than changes to method invocations. Table 1 shows the change types
that we consider, which were also considered in a previous work [35].

We use srcML [36] to transform each file in the snapshots of a system into
an XML document, in which code elements are tagged by type or function,
e.g., a class declaration, a parameter list, or a control flow statement. Then, we
compare the srcML tags between each two subsequent snapshots and extract
their differences. The removed tags from the older snapshot and the added
tags in the newer snapshot are changed tags. We manually group the unique
changed tags into a series of change types. Table 1 shows the change types
and their corresponding srcML (changed) tags. We group some change types
together, which have similar impacts on source code. Changes in a same group
are likely to have similar impacts on fault-proneness.
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Table 1 Change types identified from the source code of the systems studied

Change type srcML tag(s)
Access super, public, private, protected, extern
Class extends, class, interface, implements, class decl
Code block expr stmt, expr, block
Comment annonation, comment, @type, @format
Control flow while, do, if, else, elseif, break, goto, for, foreach, control,

continue, then, switch, case, return, incr, default, condition
Declaration decl stmt, modifier, specifier, decl, function decl, literal, label,

empty stmt, construction decl, annonation dfn
Exception assert, try, catch, throw, throws, finally
Import import, package
Invocation call
Method constructor, default, static, type, lambda, function, func-

tion decl, unit
Operator index, synchronized, enum, operator, ternary
Parameter argument, param, parameter list, argument list, parameter
Renaming renaming, name

For a given file F , in a specific snapshot S, our approach yields a list of
change types listed in Table 1. Because we study design (anti-)patterns from
commits; in each selected snapshots, we aggregate the change types related to
F in the commits {C1, C2, ..., Cn}, which form that snapshot.

4 Experimental Setup

We now describe the systems and patterns making our experimental setup.

4.1 Subject Systems

We consider seven Java-based open-source systems for our study, summarised
in Table 2. We select these systems based on diversity in code size, application
domains, and evolution histories. The number of lines of code of these systems
range from hundred of thousand to several millions. They belong to different
domains, from IDE to database. Some were used in previous studies, which
allows some comparisons. These systems have evolved over the years and have
many commits/versions to provide a dataset for analyzing pattern mutations
and fault-proneness.

However, the choice of systems is inherently a threat to the conclusion and
generalisability of any empirical study, which we acknowledge in Section 7.

We now briefly describe the subject systems.

Eclipse IDE for Java is an IDE for Java developers. The IDE offers the Java
Development Tools (JDT) to develop Java systems. It contains also CVS, SVN,
and Git clients. It also includes an XML editor, Mylyn as a task management
system, build supports for Maven and WindowBuilder, etc.
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Table 2 Analyzed systems

System Applicaion domain # Commits LOC Issue Tracker

Eclipse for Java IDE 281,396 9,064,794 Bugzilla
Nuxeo Platform Colaboration management 265,380 5,741,131 Jira
oVirt Visualization platform 149,128 2,764,655 Bugzilla
Matsim Transportation management 44,200 1,602,877 Atlassian
Apache Solr Search server 30,995 658,711 Jira
Apache Ignite Distributed DB platform 24,104 1,471,036 Jira
Mule Community Edition Integration platform 22,891 309,616 Jira

Nuxeo, also called Nuxeo Platform, is an open-source context management
and collaboration platform, which provides different information management
solutions for developers to build business applications.

oVirt is a visualization management platform in Java. It provides a central-
ized management of resources, storage, and virtual machines, which allows
managing enterprise infrastructure.

Matism is a framework to build large-scale transport simulations. Its develop-
ment team provides a comprehensive documentation for users and developers
to ease usability and maintainability.

Apache Solr from the Apache Lucene project is an open-source Java search
server for Web sites, databases, and files. It is popular and fast, using Lucene
Java search library at its core. It runs as a standalone full-text search server.

Apache Ignite is a in-memory computing platform used as database and
caching system. It helps solving problems related to speed and scalability and
can be used to speed up relational and NoSQL databases.

Mule is the run-time engine of a Java-based enterprise service bus (ESB) and
integration platform. Developers can connect applications quickly and easily
to exchange data. It allows service creation and hosting, service mediation,
message routing, and data transformation.

4.2 Analyzed Patterns

4.2.1 Anti-patterns

We select thirteen anti-patterns in our study. These anti-patterns introduced
by Brown et al. [15] express problems with data, complexity, size, and the
features related to classes [7]. They have been studied in previous work [7].
We summarize their definitions below, details are available elsewhere [37]:

– AntiSingleton (AS): A class that provides mutable class variables, which
could be used as global variables.

– Blob (Bl) or God Class (GC): A class that is too large and not cohesive
enough, which monopolizes most of the system processing, takes most of
the decisions, and is associated to data classes.

– ClassDataShouldBePrivate (CS): A class that exposes its fields, thus vio-
lating the principle of encapsulation.
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– ComplexClass (CC): A class that has (at least) one large method and
complex method, in terms of cyclomatic complexity and line of codes LOCs.

– LargeClass (LC): A class that has (at least) one large method, in terms of
LOCs.

– LazyClass (LZC): A class that has few fields and methods that are complex.
– LongMethod (LM): A class that has (at least) one method that is overly

long, in terms of LOCs.
– LongParameterList (LP): A class that has (at least) one method with a

long list of parameters with respect to the average numbers of parameters
per methods.

– MessageChain (MCh): A class that uses a long chain of method invocations
to realize one of its functionality.

– RefusedParentBequest (RP): A class that overrides methods using empty
bodies.

– SpaghettiCode (SC): A class declaring long methods which do not have
any parameters. These methods are complex, with a complicated control
flow. The class does not use polymorphism and–or inheritance.

– SpeculativeGenerality (SG): A class that is defined as abstract but that
has very few children, which do not make use of its methods.

– SwissArmyKnife (SA): A class whose methods can be divided into disjoint
sets, providing different, unrelated functionalities.

4.2.2 Design Patterns

We consider eight design patterns presented in Gamma et al. [1], which we
select due to their popularity and because previous works also studied them
[38,39]. Their complete definitions and specifications are available in [39,40]:

– Builder (Bu): A pattern to separate the construction of a complex object
from its representation.

– Command (Cm): A pattern to encapsulate a request as an object.
– Composite (Cp): A pattern that composes objects into tree structures to

represent part-whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly.

– Decorator (De): A pattern that attaches additional responsibilities to an
object dynamically. Decorator provides a flexible alternative to sub-classing
for extending functionality.

– Factory Method (FM): A pattern that defines an API for object creation
in which subclasses choose the class to instantiate.

– Observer (Ob): A pattern that defines a one-to-many dependency between
objects to notify all the object dependent on one object when it changes.

– Prototype (Pt): A pattern that specifies the kind of objects to create using
a prototypical instance.

– Singleton (Si): A pattern that restricts the instantiation of a class to one
object to coordinate actions across a system.
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5 Results and Analysis

We now present the results of our study and answer our five research questions.

5.1 RQ1: Do design patterns and–or design anti-patterns mutate during
software evolution and what is the probability of the mutations?

Motivation: Understanding the evolution of patterns is important because
it can help developers to identify and circumvent risky design patterns and
prevent the appearance of design anti-patterns [14]. While some tools can find
software entities and their evolution patterns automatically, e.g., [5,41–43], no
previous work investigated the mutation of design (anti-)patterns.
Computing probability values for all possible mutations: We apply the de-
tection tools described in Section 3 on snapshots of each of the systems listed
in Table 2. Each snapshot contains a large number of classes, which may par-
ticipate in different types of design anti-patterns and–or design patterns.

We take snapshots every 500 commits in the evolution histories of the
systems. This commit interval period is adequate to detect changes occurring
between two subsequent snapshots [44,45].

We automatically compare each two subsequent snapshots to compute the
numbers of added or deleted occurrences of design patterns and design anti-
patterns. We build one Markov model for each system to show the probabilities
of mutations between design patterns and design anti-patterns.
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Fig. 3 FactoryMethod (FM) mutation in Eclipse.
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Fig. 4 Builder (Bu) mutation in Nuxeo.
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Fig. 5 Blob (Bl) mutation in oVirt.
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Fig. 6 Builder (Bu) mutation among the different snapshots of Matsim.
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LP

AS

CS

LZC

LM

Sink

0.779

0.001

0.008

0.007

0.079

0.125

Fig. 7 LongParameterList (LP) mutation in ApacheSolr.

LPCS

LZCLM

Sink

0.851
0.009

0.006

0.051

0.081

Fig. 8 LongParameterList (LP) mutation in ApacheIgnite.

Tables 3 to 9 show the mutations between design patterns and design
anti-patterns that occurred in their evolutions. Table 10 aggregates all the
mutations in all the systems. We added two additional states (source and
sink) to describe the appearances of design (anti-)patterns (sources) and the
disappearance of some design (anti-)patterns (sinks).

The mutation probabilities shown in previous tables are percentages that
may hide outliers. Therefore, we also calculate the standard deviation values
among these probabilities. We found that the probabilities across snapshots
have low standard-deviation values, as shown in Table 11, with the highest
value of 0.196 for Nuxeo.

LPCS

LZCLM

FM

0.676

0.014

0.009

0.115

0.186

Fig. 9 LongParameterList (LP) mutation in Mule.
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Table 11 Standard deviation values and confidence levels

Systems Standard Deviation Confidence Level Margin of Error

Apache Ignite 0.1966 90%, 1.645 σx 0.04347±0.0147 (±33.87%)

Apache Solr 0.1921 90%, 1.645 σx 0.04343±0.0144 (±33.12%)

Eclipse 0.1833 90%, 1.645 σx 0.04317±0.0137 (±31.79%)

Matsim 0.1722 90%, 1.645 σx 0.04304 ±0.0129 (±29.96%)

Mule 0.1766 90%, 1.645 σx 0.04345 ±0.0132(±30.43%)

Nuxeo 0.1968 90%, 1.645 σx 0.0451 ±0.0147 (±32.67%)

oVirt 0.1961 90%, 1.645 σx 0.04352 ±0.0147 (±33.73%)

Table 12 Mean values of the mutations of design anti-patterns and design pattern occur-
rences mutated in all the snapshots of each system

Systems Mean Value of DAPs mutations Mean Value of DPs mutations

Apache Ignite 0.0799 0.0037

Apache Solr 0.1026 0.0232

Eclipse 0.1355 0.1128

Matsim 0.2013 0.1917

Mule 0.1989 0.1341

Nuxeo 0.0848 0.03

oVirt 0.0674 0.0252

Table 11 shows a systematic analysis of the confidence levels of our results.
We computed the standard-deviation values and confidence intervals of our
results for a confidence level of 90% as follows:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)
2

(1)

where xi is each value from the population (mutations probabilities), µ is the
mean of the population, and N is the size of the population, i.e., the total
number of mutations in all the snapshots of a system.

With the standard deviation known, we compute the confidence interval
for a population mean as:

X̄ ± Z × σ√
N

(2)

where X̄ is plus or minus a margin of error, Z is the Z-value for the chosen
confidence level, σ is a standard deviation and N is the size of the population.

We observe that, for a confidence level of 90%, the confidence intervals,
which indicate how much we can expect the results to reflect the observations
from the overall population, were around 30% in all the analysed systems. We
consider these values of confidence levels and intervals acceptable to deduce
trends and infer conclusions. Indeed, while we could not find similar discussions
and numbers in other software-engineering papers, we observed similar values
used to deduce trends in other domains, e.g., public health [46].

For example, SpaghettiCode has the most representative mutation proba-
bility from Source in Mule (see Table 9) and Blob to Sink in Apache Solr (see
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Table 13 Most representative mutations between design patterns and design anti-patterns
according to their mutation probabilities

System Mutation Type From To Probability

Apache Ignite

DAP→DAP Blob (Bl) AntiSingleton (AS) 0.375

DAP→DP - - -

DP→DAP - - -

DP→DP Builder (Bu) Observer (ob) 0.004

Apache Solr

DAP→DAP Blob (Bl) AntiSingleton (AS) 0.321

DAP→DP - - -

DP→DAP - - -

DP→DP FactoryMethod (FM) Composite (Cp) 0.012

Eclipe IDE

DAP→DAP LargeClass (LC) ComplexClass (Cc) 0.500

DAP→DP - - -

DP→DAP FactoryMethod (FM) LongMethod (LM) 0.003

DP→DP FactoryMethod (FM) Composite (Cp) 0.169

Matsim

DAP→DAP Blob (Bl) AntiSingleton (AS) 0.372

DAP→DP Blob (Bl) FactoryMethod (FM) 0.346

DP→DAP Command (Cm) SwissArmyKnife (SA) 0.030

DP→DP Command (Cm) FactoryMethod (FM) 0.387

Mule

DAP→DAP Blob (bl) AntiSingleton(AS) 0.313

DAP→DP RefusedParentBequest (RP) FactoryMethod (FM) 0.433

DP→DAP Command (Cm) SwissArmyKnife (SA) 0.019

DP→DP Command (Cm) FactoryMethod 0.193

Nuxeo

DAP→DAP Blob (bl) AntiSingleton(AS) 0.283

DAP→DP Blob (Bl) FactoryMethod (FM) 0.297

DP→DAP Singleton (Si) LazyClass (ZC) 0.004

DP→DP Singleton (Si) FactoryMethod (FM) 0.133

ovirt

DAP→DAP Blob (bl) AntiSingleton(AS) 0.299

DAP→DP - - -

DP→DAP Singleton (Si) AntiSingleton (AS) 0.001

DP→DP Singleton (Si) Prototype (PT) 0.097

Table 7). Table 13 shows the most representative design patterns and design
anti-patterns regarding mutation probabilities to/from other patterns.
Analysing pattern evolution: We observe in Table 13 that not all design pat-
terns and design anti-pattern undergo changes. Some patterns remain stable
during evolution. For example, LazyClass and MessageChain are stable design
anti-patterns, while Prototype is a persistent design pattern in Apache Solr. In
Matsim, design anti-patterns SwissArmyKnife, LazyClass, and MessageChain
and design patterns Observer and ProtoType are stable.

However, in general, design anti-patterns tend to evolve in all studied sys-
tems. We observe that more than half of the design anti-patterns mutated into
other design patterns or design anti-patterns across the different snapshots of
the studied system.

For example, in Matsim (see Table 6), 86% (probability value 0.86) Long-
Method remains stable and mutate with only a probability of 14% into other
patterns. In oVirt (see Table 5), Blob remain persistent in the system with
39.4% probability, while 29.9% mutated to AntiSingleton and into other pat-
terns with a probability of 30.8%. As last example, in Eclipse, 45.5% of Re-
fusedParentBequest remain between snapshot while 27.3% mutated to Mes-
sageChain and 27.3% mutated into other patterns.

We saw fewer mutations among design patterns. As an example, in Apache
Ignite, 97.6% of Command remained stable, with only 0.4% mutating into
other patterns.

For a better understanding of the design pattern and design anti-pattern
mutations, Figures 3 to 9 show the most representative mutations in the
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Markov models as graphs, for each of the systems. Because showing all possi-
ble probabilities would make the graphs unreadable, we choose a threshold of
0.100 to reduce the number of edges in each graph. The gray cells in Tables
3 to 9 highlight the probabilities shown in the figures. (The graphs for all the
mutations in all the systems are available on-line8.)

These graphs contain information on mutating design (anti-)patterns that
can help developers to avoid the mutations that could have negative impacts
on software quality.

Summary: Our results show that design patterns and design anti-
patterns mutate during the evolution of software systems. Despite an
average of less than 20% of the identified design anti-patterns occur-
rences having mutated among all the snapshots of systems, more than
half of the types of design anti-patterns were involved in these mu-
tations. For example, Table 12 shows that, in Matsim, 20.13% of the
design anti-pattern identified in the first snapshot mutated during the
studied period. During that period, ten types of design anti-patterns
out of the 13 considered in our study were involved in mutations. In
most of the systems, almost all the design patterns remained stable
during evolution. Blob and Command are the design anti-patterns and
design pattern with the higher mutation probabilities.

5.2 RQ2: What types of changes lead to mutations between design patterns
and design anti-patterns?

Motivation: Knowing the causes of design (anti-)patterns mutations would be
useful during maintenance. They could help developers to focus on the most
frequent change types triggering patterns mutations.
Analysing change types: We use srcML9 to create an XML file for each snap-
shot of a system and match their tags to find changed tags, as explained in
Section 3.5. We categorise change types based on our categories in Table 1.
We compare the percentages of each change type for each system. We apply
the same methodology for all the subject systems. Figures 10 to 16 show the
types of changes per design (anti-)patterns per systems.

Table 14 presents the numbers of each change types in all the systems.
For example, in Apache Ignite, we observe that Access and Renaming are
the least and most representative change types for both design patterns and
design anti-patterns. They lead to many changes in occurrences of both design
anti-patterns and design patterns.

8 http://www.ptidej.net/downloads/replications/emse19c/
9 https://www.srcml.org/
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Fig. 10 Number of different types of changes in Eclipse classes with design anti-patterns
and design patterns.

Analysing change types of mutations: During evolution, design patterns and
design anti-patterns can mutate into other design patterns and design anti-
patterns. We investigate which types of changes lead to such mutations. Tables
15 shows the number of each change types during the mutation for all the
studied systems.

Results show that, in Apache Ignite, Renaming, Comment, and Declaration
lead the most mutations from design anti-patterns (DAPs) to design patterns
(DPs). It is almost the same for DPs-to-DAPs mutations but Parameter has
more importance than Declaration. In Apache Solr and Eclipse for both DAPs-
to-DPs and DPs-to-DAPs mutations, Renaming, Declaration, and Comment
are the most representative change types. In Matsim, Renaming, Operator, and
Declaration have the most impact on DAPs-to-DPs mutations while Renam-
ing, Comment, and Operator lead to more DPs-to-DAPs mutations. In Mule,
for both DAPs-to-DPs and DPs-to-DAPs mutations, Renaming, Comment,
and Operator are the most representative change types. In Nuxeo, there are
few mutations, in which Comment, Renaming, and Declaration yield DAPs-
to-DPs mutations while Comment, Code Block, and Control Flow yield more
DPs-to-DAPs mutations. Finally, in oVirt, Renaming, Declaration, and Com-
ment are change types that lead to DAPs-to-DPs mutations while Renaming,
Operator, and Declaration bring DPs-to-DAPs mutations.

Renaming is the most frequent change type. There are different types of
renaming, described in [47]. In some types, an entity, e.g., a package, a class,
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Fig. 11 Number of different types of changes in Nuxeo classes with design anti-patterns
and design patterns.
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Fig. 12 Number of different types of changes in oVirt classes with design anti-patterns and
design patterns.
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Fig. 13 Number of different types of changes in Matsim classes with design anti-patterns
and design patterns.
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Fig. 14 Number of different types of changes in Apache Ignite classes with design anti-
patterns and design patterns.
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Fig. 15 Number of different types of changes in Apache Solr classes with design anti-
patterns and design patterns.
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Fig. 16 Number of different types of changes in Mule classes with design anti-patterns and
design patterns.



Design Anti-pattern and Design Pattern Mutations 29

etc., is renamed. In other types, one or more terms are changed (simple and
complex renaming). Sometimes, when one or more terms change, the meaning
of the identifier also changes (semantic renaming). The grammar of an identi-
fier may also change during evolution (grammar renaming). When developers
use some tools to apply a renaming operation, the tool may not rename all
variables consistently in all related files. Besides, certain source-code changes
must be made together to preserve consistency. Changes in comments and
declarations led to more mutations not as root causes of these mutations but
because developers changed comments and declarations while evolving their
systems for other reasons, i.e., fixing faults. Future work include a manual,
qualitative analysis of the mutations to identify their root causes.

Summary: Some change types affect the mutations between design pat-
terns and–or design anti-patterns more than others. We observe that
the change types leading to mutations in all the studied systems are
Renaming, Comment, Declaration, and Operator.

5.3 RQ3: What is the fault-proneness of mutated design patterns and
anti-patterns and what transitions lead to more fault-prone mutations?

Motivation: The results from RQ1 and RQ2 show that design patterns and de-
sign anti-patterns mutate during software evolution. However, they do not say
anything about the impact of these mutations in software quality. Therefore,
we investigate these mutations and their fault-proneness. Using this informa-
tion, developers could understand the reasons of faults and take actions to
reduce the risk of introducing faults.

Analysing design patterns and design anti-patterns fault-proneness: For
each system, we mine its commit log and extract fault and commit IDs related
to the faults and the dates when the faults were introduced. We look for faults
introduced from one snapshot to the next. We use the dates to distinguish
between faults appearing in one snapshot and those appearing between two
extracted snapshots.

Table 16 shows the numbers of faulty and clean of classes involved in pat-
terns. One class can be involved in several faults in the studied snapshots so
we show in Table 17 the numbers of unique faulty and clean classes involved
in patterns. Finally, in Table 18, we compare the percentages of faulty and
clean classes involved in design patterns and design anti-patterns. Moreover,
we show in Table 18 the relative percentages of faults per class participating,
or not, in design (anti-)patterns.

With these tables, we summarise our whole dataset with: the numbers
of (unique) faulty and non-faulty (clean) classes participating or not in de-
sign (anti-)patterns and their relative percentages. We thus can compare the
prevalence of faults in different classes and confirm that classes participating
in design anti-patterns have more faults than classes involved in design pat-
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terns. Thus, we have evidence supporting that classes that participate in design
anti-patterns are more fault-prone than classes involved in design patterns.

For example, in Eclipse, 13.7% of design pattern classes are fault-prone
while 37.3% of design anti-pattern classes are fault-prone. Table 18 is showing
similar trends in all the analysed systems.

Table 16 Design anti-pattern and design-pattern mutations between faulty and clean
classes

Systems
# of Faulty classes

# of Clean classes having DAPs, DPs
Design Anti-patterns Design Patterns

Apache Ignite 10,984 1,051 81,093

Apache Solr 11,156 219 109,225

Eclipse 15,240 5,182 19,928

Matsim 4,053 1,888 896,510

Mule 17,794 5,924 197,574

Nuxeo 18,724 396 146,180

oVirt 12,605 110 217,565

Table 17 Faulty and clean classes

Systems
# of Faulty Classes # of Faulty Classes # of Clean Classes

DAPs DPs without Patterns DAPs DPs

Apache Ignite 10,984 (685) 1,051 (84) 3,984 (3,984) 71,784 (3,474) 9,309 (395)

Apache Solr 11,156 (638) 219 (22) 6,351 (6,351) 101,044 (3,447) 8,181 (392)

Eclipse 15,240 (591) 5,182 (217) 12,285 (12,285) 13,610 (562) 6,318 (213)

Matsim 4,053 (469) 1,888 (115) 291 (291) 326,460 (14,425) 570,050 (9,913)

Mule 17,794 (2,955) 5,924 (196) 4,370 (4,370) 126,980 (7,341) 70,594 (1,593)

Nuxeo 18,724 (1,487) 396 (68) 7,414 (7,414) 143,276 (3,659) 2,904 (170)

oVirt 12,605 (377) 110 (8) 523 (523) 214,027 (7,653) 3,538 (214)

Table 18 Faulty and clean classes in percentages

Systems
Design anti-patterns Design patterns

Faulty Classes (%) Clean Classes (%) Faulty Classes (%) Clean Classes (%)

Apache Ignite 14.7% 74.9% 1.8% 8.5%

Apache Solr 14.1% 76.6% 0.48% 8.7%

Eclipse 37.3% 35.5% 13.7% 13.4%

Matsim 1.9% 57.9% 0.46% 39.7%

Mule 24.4% 60.7% 1.6% 13.2%

Nuxeo 27.6% 67.9% 1.3% 3.2%

oVirt 4.6% 92.7% 0.09% 2.6%

Analyzing mutations fault-proneness: A mutation between design patterns
and design anti-patterns can lead to faults. We use clean and faulty classes
and their participation (or not) into design patterns and design anti-patterns
to identify the mutations experienced by these faulty classes.

Table 19 presents the most representative mutations that led to faults in
each studied system. We observe that mutations from design anti-patterns to
other design anti-patterns are more faulty. LongParameterList to LongMethod
or LongMethod to LazyClass are such mutations in Apache Ignite.
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In Eclipse, Matsim, and Mule, there are mutations from design patterns to
design patterns that also led to more faults. FactoryMethod to Decorator in
Eclipse, Builder to FactoryMethod in Matsim and Mule are such mutations.

There are also mutations from design anti-patterns to design patterns that
led to faults as well, like AntiSingleton to FactoryMethod in Matsim or Fac-
toryMethod to LongMethod in Eclipse.

Table 19 Most representative mutations between design patterns and design anti-patterns
according to their mutation probabilities and fault-proneness

System Mutation Type From To Probability

Apache Ignite
DAP→DAP LongParameterList LongMethod 0.571

DAP→DAP LongMethod LazyClass 0.285

Apache Solr

DAP→DAP RefusedParentBequest MessageChain 0.427

DAP→DAP LongMethod LazyClass 0.156

DAP→DAP ComplexClass ClassDataShouldBePrivate 0.156

Eclipe IDE

DP→DP FactoryMethod Decorator 0.492

DAP→DAP LongMethod LazyClass 0.385

DP→DAP FactoryMethod LongMethod 0.056

Matsim

DP→DP Builder FactoryMethod 0.677

DAP→DAP SpagettiCode RefusedParentBequest 0.152

DAP→DP AntiSingleton FactoryMethod 0.114

Mule

DP→DP Builder FactoryMethod 0.479

DAP→DP ComplexClass FactoryMethod 0.264

DAP→DAP ComplexClass ClassDataShouldBePrivate 0.223

Nuxeo
DAP→DAP LazyClass LargeClass 0.285

DP→DP Singleton FactoryMethod 0.495

oVirt
DAP→DAP Blob AntiSingleton 0.722

DP→DP Singleton Prototype 0.166

Summary: We observed that in some systems, as expected and shown
in previous work, design anti-patterns are more fault-prone than design
patterns. We also showed that some mutations are more fault-prone
than others, in particular mutations from design anti-patterns to design
patterns or to other design anti-patterns.

5.4 RQ4: Do specific types of changes lead to increased fault-proneness
during mutations?

Motivation: Different types of changes have different impacts on the soft-
ware systems due to their differences in functionality and the ripple effects
of changes. Some types of changes likely introduce more faults than others.
Thus, understanding which types of changes increase the fault-proneness of
the mutations could help developers to foresee and prevent faults by prevent-
ing/planning such changes during software evolution.
Analysing change types leading to faults: We use the same data as in RQ2
and RQ3. For each system, we identify the number of faulty classes that have
changed through mutations between design anti-patterns and–or design pat-
terns. Table 20 shows the number of change types that led to faults. We report
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that, in all studied systems, Renaming, Comment, and Operator are the change
types that lead to more faults.

Table 20 Numbers of change types in the studied systems leading to faults

Systems → Apache Ignite Apache Solr Eclipse Matsim Mule Nuxeo oVirt

Change
Types

# changes # changes # changes # changes # changes # changes # changes

Access 18 18 37 22 11 62 25

Class 689 431 306 306 422 208 763

Code block 2,972 2,102 4,919 1,284 1,306 854 3,833

Comment 12,169 5,498 38,150 2,813 6,270 6,161 4,653

Control flow 2,903 1,935 11,678 660 1067 819 2,406

Declaration 5,912 5,386 11651 3,129 3,191 2,628 7,484

Exception 1,696 1221 1255 140 526 786 210

Import 2,831 2,400 2,958 1,425 2,443 2,064 4,268

Invocation 1,550 1,196 1,986 1,061 840 476 1,882

Method 2,509 1,851 4,093 637 1,697 1,229 3,619

Operator 5,120 4,364 16,094 6,215 4,228 2,675 8,134

Parameter 6,418 3,504 5,108 2,655 2,607 1,815 5,337

Renaming 47,811 24,640 67,040 32,445 22,968 12,736 65,245

Total changed
classes

5,505 4,163 11,934 3,073 4,324 3,514 7,150

Analyzing fault-proneness of classes with design patterns and design anti-
patterns: Table 21 presents the numbers of faulty changed classes and Figures
17 and 18 show the percentages of faulty changed classes participating in design
patterns and design anti-patterns for all the systems. Figure 19 compares the
numbers of faulty and clean classes changed in all the snapshots of the studied
systems. Each first bar presents the number of faulty and clean changed classes
participating in design anti-patterns and the second one is faulty and clean
classes having design patterns. We observe that change types have impacts on
the fault-proneness of changed classes. Changed classes participating in design
patterns are less faulty than those participating only in design anti-patterns.

Figures 17 and 18 show that some of the faulty classes are those which
had changed in the past. For example, in Eclipse, the percentages of faulty
classes participating in design patterns is 81% while for those participating in
design anti-patterns it is 86%. The differences between these two categories are
more visible in Apache Solr, where 51% of changed classes are participating
in design anti-patterns, and only 11% of them have design patterns. In Rhino,
changes impact fault-proneness significantly, because, on average, more than
85% of changed classes are faulty. Thus, the trend is that changed classes with
design anti-patterns tend to be more fault-prone than changed classes with
design patterns.

Summary: Some change types applied to design patterns and design
anti-patterns make software systems more fault-prone compared to oth-
ers. We observed that, in all the studied systems, Renaming, Comment,
and Operator are the change types from design patterns to design anti-
patterns that most lead to faults.
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Table 21 Numbers of faulty and clean changed classes

Systems Patterns # Faulty classes # Clean classes

Apache Ignite
Design Anti-patterns 5,112 4,178

Design Patterns 393 464

Apache Solr
Design Anti-patterns 4,035 3,921

Design patterns 128 1,064

Eclipse
Design Anti-patterns 9,406 1,551

Design patterns 2,554 601

Matsim
Design Anti-patterns 2,549 30,042

Design patterns 524 13,244

Mule
Design Anti-patterns 3,374 2,311

Design patterns 950 1,225

Nuxeo
Design Anti-patterns 3,469 1,935

Design patterns 45 36

oVirt
Design Anti-patterns 7,075 27,705

Design patterns 75 482
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Fig. 17 Faulty changed classes percentages with design pattern in the studied systems

6 Discussion

By comparing the results between all studied systems, we observed remarkable
differences in the proportions and types of mutations of design anti-patterns
and design patterns. For example, in oVirt in Table 5, 29.9% of Blob mutated
to AntiSingleton (the highest mutation percentages). However, we did not
observe in the same system any mutation from Blob to a design pattern.
On the contrary, in Nuxeo, although the mutation of Blob to AntiSingleton
remains frequent (28.3%), the highest mutation proportion observed is Blob
to Factory Method (29.7%).

Another remarkable observation is that, in all studied systems, the occur-
rences of the design anti-pattern SwissArmyKnife and of the design pattern
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Fig. 18 Faulty changed classes with design anti-patterns percentages in the studied systems

Prototype never mutated. We cannot draw any conclusion about a potential
impact of the mutation of these patterns on the quality of the systems.

Different software systems may have different design patterns and–or de-
sign anti-patterns and may evolve differently. From our analysis, we observe
different mutation behavior for all analyzed systems because these systems
have different designs, contexts, and development teams. We observed that
some design patterns and–or design anti-patterns remained unchanged in all
releases and they did not mutate during evolution.

For example, class org.mule.test.infrastructure.process.MuleUtils in all the
snapshots of Mule, is a LongMethod design anti-pattern. This design anti-
pattern is introduced when developers continue adding new functionalities
to a method while nothing is never taken out. Usually, developers prefer to
add code to an existing method instead of creating a new one [15], which
means that another line is added and then another, giving birth to a tangle of
spaghetti code. This longer method or function become harder to understand
and maintain.

We found that some of the design anti-patterns are mutated frequently to
design patterns when developers are correcting faults during the evolution of
the systems. Blob is the most mutated design anti-pattern in Apache Ignite. It
mutated to AntiSingleton with 37.5% probability. Blob presents a single class
with a large number of attributes, operations, etc., surrounded by a number
of data classes. A Blob is too complex for reuse and testing, while such classes
are inefficient, and expensive to load into memory.

There are also some design patterns that mutated to design anti-patterns.
Command is an example of a design pattern that often mutated into Swis-
sArmyKnife (38.7% of the time) in Matsim. SwissArmyKnife is an excessively
complex class interface. Developers attempted to provide for all possible uses
of the class. They added a large number of interfaces (APIs) to meet all pos-
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Fig. 19 Faulty changed classes with design anti-patterns and design patterns in the studied
systems

sible needs. The code to create separate Command classes grow to encompass
more functionalities and become a SwissArmyKnife.

We observed that the change types that led to more mutations are Renam-
ing, Comment, Operator, and Declaration, in most of the studied systems.
These types of changes helped developers to correct their systems and remove
some design anti-patterns. We also noticed that the most frequent mutation
was LongParameterList to LongMethod.

We found in some analysed systems, that design anti-patterns are more
fault-prone than classes involved in design patterns, while in some other sys-
tems, it is quite the opposite. Although these observations mean that employ-
ing design patterns may not always benefit the software quality, and introduc-
ing anti-patterns will not systemically compromise the software quality, some
previous research related similar observations.

Bieman et al. [28] observed that large classes participating to design pat-
terns were more change-prone. Vokač et al. [12] found a significant differences
in the fault-proneness of different design patterns. Gatrell et al. [29] observed
that pattern-based classes are more change-prone and less stable than non-
pattern classes [12]. Long [48] showed the benefits of some anti-patterns in the
context of code reuse.

The context of using design anti-patterns or design patterns [48], their
static and historical relationships [11,49], and their internal characteristics,
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such as their numbers of lines of code [28], could be compounding factors
that lead to our previous observations, which confirm previous findings that
software quality decreases with design anti-patterns and increases with design
patterns.

A fault is an error that causes a software system to produce an incorrect
or unexpected result or to behave in unintended ways. Although several previ-
ous works, e.g., [7,14], showed that an important proportion of faults may be
related to design patterns, anti-patterns, and mutations among them, many
other faults remain unrelated to patterns or their mutations. Table 17 shows
the numbers of (unique) faults per classes participating or not in some design
(anti-)patterns. It shows that, in all studied systems except Matsim, the num-
bers of classes with faults but not participating in any design (anti-)pattern is
higher than the number of classes with faults and participating in some design
(anti-)pattern.

The results in this paper generally confirm results from previous studies and
provide new research directions to further understand the impact of program-
ming practices, like patterns and evolution, on software quality. First, while
we confirmed that, generally, classes participating in design anti-patterns have
more faults than classes participating in design patterns or no patterns; we
also reported contradictory cases, like the design anti-pattern SwissArmyKnife
and the design pattern Prototype. Thus, further studies are needed to under-
stand the root causes of such cases, through manual, qualitative analyses of
the changes leading to the faults.

We showed that some mutations are more frequent than others between
some design anti-patterns and design patterns. We reported changes that led,
concretely, to these mutations. However, our study is only on co-occurrences
of these changes and mutations: more studies are required to understand why
some patterns mutate into others in some systems but not others. We believe
that these mutations and their differences may be due to the systems them-
selves and their developers but further studies are required to identify root
causes and assert causation.

Finally, we showed that some mutations are more fault prone than others,
which could guide developers but also researchers. For developers, our observa-
tions can help avoiding harmful changes, i.e., fault-prone mutations, and focus
some refactoring activities on beneficial changes. For researchers, our obser-
vations provide a first step in understanding the introduction of patterns and
the changes that may lead to them as well as their impact on fault-proneness.

7 Threats to Validity

We now discuss potential threats to the validity of the results of our study,
following existing guidelines [50,51].
Construct validity: These threats concern the relation between theory and
observation. We know that the used design pattern and design anti-pattern
detection techniques (DECOR and DeMIMA) in this study include some sub-
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jective understanding related to the definition of design patterns and design
anti-patterns. Their authors reported recall rates of 100% for both techniques
while the precision in the worst case was 31%. We accept that the precision
of these techniques is a concern. Some false positive classes may pass the val-
idation because they “looks like” playing a role in some patterns.

We also accept that, in finding change types which led to faults, we could
have matched classes that are not representing the actual same class. For
example, class C is not match with a.b.C.java but could be matched with
the b.c.java. Moreover, we know that during evolution, class names change
as well. As for precision, the manual validation could be affected by subjec-
tiveness or human error. We should consider each type of renaming as we
may misinterpret that there is a mutation between design patterns and design
anti-patterns, while in fact the class name changed and the patterns remained
stable.

Internal validity: This threat concerns factors affecting our results. This threat
is about the causality drawn from the study. It concerns our selection of studied
systems and methodology. The accuracy of DECOR and DeMIMA impacts
our results, because the number of design patterns and design anti-patterns
computed with DECOR and DeMIMA is used to calculate the probabilities of
mutations. Other detection techniques should be used to validate our findings.

Our results show correlations between design anti-patterns and design pat-
terns, their mutations, and faults. However, they do not show causation. Hence,
it is possible that some of the changes, which led to mutations, e.g., changes to
comments, although correlated to mutations, are not the root causes of these
mutations. Identifying these root causes would require studying each change
leading to mutations individually, manually, which is future work.

Conclusion validity: These threats concern the relationship between the treat-
ment and the results. We paid attention in choosing the systems.

We used the SZZ algorithm [19] to identify commits introducing faults.
Although this algorithm may yield false positive results, it has been success-
fully employed in previous works, such as [52,53]. In this paper, to increase
the algorithm’s accuracy, we removed all fault-inducing commit candidates
that only changed blank or comment lines. Moreover, the static analysis tool,
srcML, can identify about 100 types of code elements from source code.

To make our results more actionable for software practitioners, we manually
grouped similar element tags into 12 major change types as shown in Table 1,
which can help developers carefully change and review fault-prone code.

Reliability Validity: These threats concern the possibility of replicating the
study. We provide all the necessary data on-line10 to help other researchers
replicate our work.

External validity: These threats concern the ability to generalize our results.
We studied seven software systems with different sizes, domains, and com-
plexity. We selected only Java systems because of the tools. We also chose
some of these systems because they have been used in previous studies. Their

10 http://www.ptidej.net/downloads/replications/emse19c/
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numbers of lines of code range from hundred of thousands to several millions.
These systems are widely used and have active developers community. They
have several years of evolution histories. They are available on-line. However,
all of them are written in Java and are open source. In the future, we plan
to investigate more diverse set of systems. Moreover, we also want to study
larger projects, with other programming languages, such as C++.

We analysed commits instead of releases to cover as much as possible the
whole histories of these systems. We choose thirteen design anti-patterns and
eight design patterns among the many available patterns.

8 Conclusion and Future Work

We investigated the evolution and impacts of design patterns and design anti-
patterns in terms of change- and fault-proneness during software evolution.
We built Markov models to analyse the mutations of design patterns and de-
sign anti-patterns in seven open-source Java systems: Apache Ignite, Apache
Solr, Eclipse, Matsim, Mule, Nuxeo, and Ovirt. We identified the change types
that led to mutations and we calculated the probabilities of all possible mu-
tations. Finally, we reported which patterns are mostly mutated into which
other patterns (including appearance and disappearance) as well as change
types.

Results showed that design patterns and design anti-patterns mutate into
one another during software evolution and that these mutations impact the
fault-proneness of classes participating in these patterns. Generally, when a
mutation led to the introduction of a design anti-pattern, quality in terms of
fault-proneness decreased; when a design anti-pattern was removed or mutated
into a design pattern, quality increased.

Using this information, developers can focus on the design patterns that
are most likely to mutate into design anti-patterns and–or to have more faults.
Thus, this information can help evolution and quality assurance by focusing
refactoring efforts on classes with design (anti-)patterns that could mutate
into patterns with higher fault-proneness.

In future work, we intend to apply our study on more systems written in dif-
ferent programming languages and also consider more design (anti-)patterns.
We will also attempt to identify the root causes of mutations by studying
manually and qualitatively the changes leading to mutations.
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