
Is Cloned Code Really Stable?

Manishankar Mondal Md Saidur Rahman Chanchal K. Roy Kevin A. Schneider
University of Saskatchewan, Canada

{mshankar.mondal, saeed.cs, chanchal.roy, kevin.schneider}@usask.ca

Abstract—Clone has emerged as a controversial term in
software engineering research and practice. The impact of clones
is of great importance from software maintenance perspectives.
Stability is a well investigated term in assessing the impacts
of clones on software maintenance. If code clones appear to
exhibit a higher instability (i.e., higher change-proneness) than
non-cloned code, then we can expect that code clones require
higher maintenance effort and cost than non-cloned code. A
number of studies have been done on the comparative stability
of cloned and non-cloned code. However, these studies could
not come to a consensus. While some studies show that code
clones are more stable than non-cloned code, the other studies
provide empirical evidence of higher instability of code clones.
The possible reasons behind these contradictory findings are that
different studies investigated different aspects of stability using
different clone detection tools on different subject systems using
different experimental setups. Also, the subject systems were not
of wide varieties.

Emphasizing these issues (with several others mentioned in
the motivation) we have conducted a comprehensive empirical
study where we have - (i) implemented and investigated seven
existing methodologies that explored different aspects of stability,
(ii) used two clone detection tools (NiCad and CCFinderX)
to implement each of these seven methodologies, and (iii) in-
vestigated the stability of three types (Type-1, Type-2, Type-
3) of clones. Our investigation on 12 diverse subject systems
covering three programming languages (Java, C, C#) with a list
of 8 stability assessment metrics suggest that (i) cloned code is
often more unstable (change-prone) than non-cloned code in the
maintenance phase, (ii) both Type 1 and Type 3 clones appear
to exhibit higher instability than Type 2 clones, (iii) clones in
Java and C programming languages are more change-prone than
the clones in C#, and (iv) changes to the clones in procedural
programming languages seem to be more dispersed than the
changes to the clones in object oriented languages. We also
systematically replicated the original studies with their original
settings and found mostly equivalent results as of the original
studies. We believe that our findings are important for prioritizing
code clones from management perspectives.

Keywords—–Code Clones; Code Stability; Software Mainte-
nance and Evolution.

I. INTRODUCTION

Reuse of code fragments with or without modifications by
copying and pasting from one location to another is a common
yet controversial software development practice. This results
in the existence of exactly or nearly similar code fragments
in different components of a software system. These code
fragments are termed as clones. In addition to copy-paste activ-
ity, some other issues including programmers’ behaviour like
laziness and tendency to repeat common solutions, technology
limitations, code evolvability, lack of code understandability
and external business forces have influences on code cloning
[29]. Whatever may be the causes behind cloning, the impacts
of code clones are of great concern [8]–[10], [12], [21], [23],

[24], [26], [27], [29]–[31], [34]–[38], [42], [46], [48], [49],
[56] from the software maintenance point of view.

While a number of studies [8], [12], [21], [24], [26], [29]–
[31], [46], [56] have identified some positive impacts of code
clones, there is strong empirical evidence [9], [10], [23], [27],
[34]–[37], [42], [47] of negative impacts of clones too. A
widely investigated term to assess the impact of code clones
on software maintenance is stability [19], [24], [32], [33],
[36], [41]. According to the literature, stability of a particular
code region measures the extent to which that code region
is not likely to change (i.e., the extent to which that code
region remains stable) during software evolution. So far, seven
studies [19], [24], [33], [36], [37], [41], [42] have defined
eight different stability measurement metrics. Each study has
quantified and compared its respective stability metric for
cloned and non-cloned code. The intuition is that if cloned
code exhibits higher instability (i.e., change-proneness) than
non-cloned code, then we can suggest cloning to be responsible
for increased maintenance effort. However, these studies could
not come to a consensus. Table I shows the eight stability
measurement metrics with their respective implications.

From Table I we see that each of the eight existing metrics
is directly related to differential changes in clone and non-
clone regions. This supports the contention that the negative
effects of clones in maintenance are directly related to the
increased changes in source code. There are two main causes
for the negative impacts of clones: (i) hidden bug propagation
[34] and (ii) unintentional inconsistent changes [10], [21]. Let
us first consider bug propagation. Suppose a code fragment
contains a bug which is temporarily hidden and this code
fragment is copied by cloning process to several other places
without the awareness of the existence of the bug. If any
instance of this propagated bug is discovered at a certain
stage of evolution, its repair should take place in all code
segments where it has been propagated. Thus, bug propagation
by cloning causes increased modifications to the respective
clones during evolution. Secondly, a new change made in a
clone fragment might need to be propagated to other clones
falling in the same clone family to maintain consistency.
Whether such changes propagate consistently or inconsistently,
there is no doubt that they increase efforts during software
evolution. Thus, we see that the negative impacts of clones
are directly related to higher changes in cloned code. In other
words, negative impacts of clones increase software instability.

Hence, if we can identify the changes occurring in the
cloned and non-cloned regions of a software system and can
make a comparative analysis of these changes, we will be
able to understand the impact of clones on maintenance for
that software system. From this assumption we limit our
study on the eight metrics (as well as studies [19], [24],
[33], [36], [37], [41], [42] listed in Table I) that represent

TABLE I: Stability Measurement Metrics and their Implications

Metric Implication

Modification frequency (MF) of
cloned or non-cloned code [24]

Modification frequency is the measurement of how frequently a code region (clone or non-clone) gets modified. It
focuses on the count of changes ignoring the quantity (or amount) of lines affected by a change. A high frequency
of modifications in a code region indicates a high instability of that code region.

Modification probability (MP) of
cloned or non-cloned code [19]

This metric is originally termed as overall instability by Göde and Harder [19]. Modification probability determines
what proportion of the tokens in cloned or non-cloned code gets modified per commit operation. If a code region
exhibits a high modification probability, then it indicates that the code region has a high instability.

Average last change dates (ALCD)
of clone or non-clone LOC [33]

Average last change date determines how lately a code region (cloned or non-cloned) gets modified. According to
this metric, a code region that got changed more lately is considered more unstable.

Average age (AvgAge) of clone or
non-clone LOC [41]

Average age (slightly different from average last change date) calculates how long a cloned or non-cloned line
of code remains unchanged on an average. According to the consideration of this metric, a source code line that
remains unchanged for a longer time is considered more stable.

Impact of changes in cloned and
non-cloned code [37]

Impact of changing a particular cloned or non-cloned method indicates the number of other methods that we also
need to change (i.e., co-change) as a consequence of changing that particular cloned or non-cloned method. A high
impact is an indicator of high instability.

Likelihood of changes in cloned
and non-cloned code [37]

Likelihood of changes quantifies the change probability of a particular cloned or non-cloned method. A higher
value of this metric for a method indicates a higher instability of that method.

Average instability per cloned
method (AICM) due to cloned or
non-cloned code [36]

This metric is a composite one incorporating two proportions: (i) average proportion of cloning in cloned methods
(EPCM) and (ii) average percentage of changes to the clones in cloned methods (CPCM). Average instability per
cloned method determines the average proportion of the number of changes occurring in the clone portions of
cloned methods to the total number of changes in the cloned methods. In other words, this is the probability by
which changes take place in the clone portions of the cloned methods. A higher value of CPCM compared to
EPCM is an indicator of higher instability of cloned code compared to non-cloned code.

Change dispersion in cloned and
non-cloned code [42]

Dispersion of changes quantifies the extent to which the changes in the clone or non-clone regions are scattered
over the respective region. A higher dispersion of changes in a code region indicates a higher instability of the
corresponding code region.

TABLE II: Research Questions (RQ)

Research Questions Corresponding to Eight Metrics
Research Questions Metrics and Studies

RQ1 Which code changes more frequently, cloned or non-cloned? Modification Frequency (MF), Hotta et al. [24]
RQ2 Which code exhibits higher modification probability, cloned or non-cloned? Modification Probability (MP), Göde and Harder [19]
RQ3 Which code changed more recently, cloned or non-cloned? Average Last Change Date (ALCD), Krinke [33]
RQ4 Which code remains unchanged for greater lengths of time, cloned or non-cloned? Average Age (AA), Our study [41]
RQ5 Which method exhibits higher impact (elaborated in Section IV-E) of changes in it, cloned or non-cloned? Impact, Lozano and Wermelinger [37]
RQ6 Which method is more likely to change, cloned or non-cloned? Likelihood, Lozano and Wermelinger [37]
RQ7 Which code in partially cloned methods exhibits higher average instability, cloned or non-cloned? Average Instability per Cloned Method (AICM),

Lozano and Wermelinger [36]
RQ8 Which code gets more scattered changes, cloned or non-cloned? Change Dispersion (CD), Our study [42]

Research Questions Corresponding to Drawbacks of Existing Studies
Research Questions Drawbacks

RQ9 Do different types of clones exhibit different stability? DES 3 (Section II-A)
RQ10 Do clones of different programming languages show different stability? DES 4 (Section II-A)
DES = Drawback of Existing Studies

different aspects of stability. We did not consider studies
[8], [12], [27], [29], [31], [60] that aim to identify whether
clones introduce bugs or are maintained consistently, or not.
We implement all the stability metrics listed in Table I in a
uniform framework and investigate these metrics for the cloned
and non-cloned code in thousands of revisions of 12 diverse
subject systems. We develop our uniform framework focusing
on the commonality of experimental settings for investigating
different stability metrics. We will describe this framework in
Section III. According to our experimental results and analysis
we summarize our findings in the following way:

● Cloned code is often (not always) more unstable than
non-cloned code in the maintenance phase.

● Both Type 1 and Type 3 clones appear to be more un-
stable compared to Type 2 clones in the maintenance
phase. We should possibly prioritize Type 1 and Type
3 clones when taking clone refactoring decisions.

● Clones in Java and C systems exhibit a higher insta-
bility than the clones in C#. We suggest that code
clones in Java and C systems should be prioritized
for refactoring. Clones in C# are often more stable
than non-cloned code in these systems. Thus, we
can possibly exclude C# systems from considerations
when taking clone refactoring decisions.

● It seems that object-oriented programming languages
promote more cloning compared to procedural pro-
gramming languages. However, changes to the clones
in procedural languages are more scattered compared
to the changes to the clones in object-oriented lan-
guages.

● From our correlation analysis of the eight stability
metrics we find that metrics in either of the two sets:
(change Dispersion, Impact, and AICM) or (Change
Dispersion, Likelihood, and AICM) can be investi-

gated in order to realize the stability scenario of code
clones in a candidate software system.

We have also used our implemented uniform framework
for systematically replicating the original studies. In our repli-
cation we have used the same subject systems (additional 16
subject systems for all studies), clone detection tools (addi-
tional two clone detection tools), and tool settings as of the
original studies. We find that the experimental results obtained
from our replication experiments are mostly equivalent to the
experimental results of the original studies.

The rest of the paper is organized as follows. Section
II mentions the drawbacks of the existing clone stability
studies and discusses our contribution towards addressing these
drawbacks, Section III describes our uniform framework for
evaluating the stability metrics, Section IV elaborates on the
stability measuring methodologies and metrics, Section V de-
scribes the experimental steps, Section VI discusses our subject
systems, Section VII presents and analyzes our experimental
results, Section VIII presents cumulative statistics and analysis
of the stability metrics, Section IX clarifies our findings and
provides actionable recommendations, Section X mentions the
possible threats to validity, Section XI discusses the related
work, and Section XII concludes the paper.

II. MOTIVATION AND CONTRIBUTION

In this section we identify the lackings of the existing
studies on comparing the stability of cloned and non-cloned
code, and discuss our contribution towards addressing those.

A. Problem Identification

A number of stability studies [19], [24], [32], [33], [36],
[37], [41] tried to identify, analyze, and compare the changes
occurring in the cloned and non-cloned code of different
software systems. However, these studies did not agree about
the comparative stability of cloned and non-cloned code. As a
result, there is no concrete answer to the long lived research
question: ’Is cloned code really stable in the maintenance
phase?’. To illuminate this question further, we investigated
each of the prior stability-related studies. We identified the
following drawbacks in the existing studies.

(1) Lack of a common framework: Different studies were
conducted on different experimental setups, more specifically

● on different sets of subject systems

● using different clone-detection tools with different
parameters

● on releases or different sets of revisions (of subject
systems) taken at different intervals. Considering re-
visions at particular time-intervals has the potential to
disregard a significant portion of changes that occurred
to the code base during those intervals.

● inconsistent preprocessing of subject systems.

Thus, different studies may have different outcomes.

(2) Investigation on insufficient metrics: Different studies
investigated different subsets of metrics. However, a complete

assessment of impacts requires the assessment of all of the
existing metrics on the same experimental settings.

(3) Lack of investigation on different types of clones:
None of these studies except [41] could draw a clear com-
parison among the impacts of different clone types because
the clone detection tools used in these studies cannot detect
different types of clones separately. Such a comparison is very
important, because this can suggest us to concentrate on clone
types that are highly change-prone compared to others that are
less change-prone (i.e., comparatively more stable) and can
thus reduce a significant amount of refactoring efforts being
spent for comparatively stable clone types.

(4) Lack of programming-language centered investiga-
tion: None of the existing studies investigated whether the
same clone types in different programming languages behave
in different ways and show different impacts as well. This
information can help software developers to be more careful
while developing projects with programming languages where
clones exhibit high instability.

(5) Lack of system diversity: Most of the studies have
drawn conclusions without investigating a wide variety of
subject systems.

B. Our Contribution

Focusing on the above issues we perform an in-depth
empirical study where we evaluate all known (eight in total)
stability measurement metrics (proposed in the studies [19],
[24], [33], [36], [37], [41], [42]) on the same experimental
setup which we term as a uniform framework. The stability
metrics and the corresponding studies have already been listed
in Table I. Different metrics were calculated following different
techniques. We term these techniques as methodologies in the
rest of the paper. We implement these methodologies (seven
methodologies in total from seven studies [19], [24], [33],
[36], [37], [41], [42]) on our uniform framework and apply
them on twelve subject systems of diversified sizes, application
domains, purposes and implementation languages. Here, we
should mention that most of the existing studies investigated
only a small number of Java systems (two systems in [19],
three systems in [33], five systems in each of [37] and [36])
which were not of wide variety.

We implemented the candidate methodologies for calcu-
lating the metrics using two clone detection tools: NiCad
[50], CCFinderX [14]. We analyzed our experimental results
from four different dimensions: (1) implementation language,
(2) clone-types, (3) subject systems, and (4) clone detection
tools to find the answer to the central research question
‘Is cloned or non-cloned code more stable during software
maintenance?’. However, we decompose this central question
into eight questions corresponding to the eight metrics. These
questions are mentioned in Table II. The last two questions in
this table address the third and fourth drawbacks.

For answering the last two questions we defined two null
hypothesis as stated below.

Null hypothesis 1 (Corresponds to RQ9): There is no
difference among the stabilities of different types of clones.

Fig. 1: The decision making procedure

Null hypothesis 2 (Corresponds to RQ10): There is no
difference among the stabilities of clones of different program-
ming languages.

We performed two-tailed Fisher’s exact tests using the
implementation at [18] on our observed data for inspecting
the acceptance or rejection of these two hypotheses. We
also answered each of the other eight questions with many
interesting outcomes in the corresponding subsections of the
result section.

III. UNIFORM FRAMEWORK

We mentioned that different studies analyzed clone sta-
bilities using different experimental setups which might be
a potential cause to the different outcomes. Focusing on
this point, we implemented all the candidate methodologies
(seven in total) that calculate eight metrics (one methodology
[37] calculates two metrics) on a common framework written
in Java programming language using MySQL as the back-
end database server. Implementation in a common framework
supports time efficient sharing of intermediate results among
the methodologies. We emphasized on the commonality of the
data storage structure in the MySQL back-end so that once the
preprocessing of files, identification of changes between files
of consecutive revisions and detection of clones from each
revision for a single subject system are done and outputs are
stored into the database, these stored results can be used by
each of the candidate methodologies to work on that subject
system. Figure 1 describes our decision-making strategy based
on the common framework.

The figure shows that we evaluated eight stability measure-
ment metrics (in total). We implemented the methodologies
and calculated the metrics using two clone detection tools:
CCFinderX [14] and NiCad [50]. From these two clone
detection tools we can obtain clone results for the following
five cases.

(1) Type 1 clone results from NiCad

(2) Type 2 clone results from NiCad

(3) Type 3 clone results from NiCad

(4) Combined clone results (clone results combining above
three clone types) from NiCad

(5) Clone results from CCFinderX. CCFinderX detects
Type 1 and Type 2 clones in a combined way. It cannot detect
Type 3 clones. Also, it cannot report code clones by separating
them by clone-types.

We will explain these cases in detail in Section VII. For
each of these five cases we calculate each of the eight metrics.
Thus, we have 40 stability-related metrics (5 clone cases × 8
metrics) in total. We calculate these 40 metrics from each of
the 12 candidate subject systems. Thus, for all subject systems,
we calculated 480 (40 metrics × 12 subject systems) results in
total. However, for calculating these 480 results we conducted
420 separate experiments (7 methodologies × 5 clone cases ×
12 subject systems). One methodology proposed by Lozano
and Wermelinger [37] calculates two metrics (Impact and
Likelihood). We define each of the 480 results as a decision
point from which we decide about whether cloned code is
more stable than non-cloned code or not. After analyzing all of
these 480 decision points from different perspectives we take a
combined decision on the comparative stability of cloned and
non-cloned code.

IV. STABILITY MEASURING METHODOLOGIES AND
METRICS

We discuss the candidate stability measurement methodolo-
gies (seven methodologies) and related metrics (eight metrics)
in the following subsections.

A. Modification Frequency (MF) Proposed by Hotta et al.

Hotta et al. [24] calculated: (i) MFc (Modification Fre-
quencies of Cloned Code or Duplicate code) and (ii) MFn
(Modification Frequencies of Non-Duplicate code) consid-
ering all the revisions of a particular code-base extracted
from subversion repository. Their metric calculation strategy
involves several sequential steps including: (1) identification
and checking out of relevant revisions of a subject system,
(2) normalization of source files by removing blank lines,
comments and indents, (3) detection and storing of each line
of duplicate code into the database. The differences between
consecutive revisions were also identified and stored in the
database. Then, MCc (Modification Count in Duplicate code
region) and MCn (Modification Count in Non-Duplicate code
region) were determined exploiting the information saved in
the database and finally MFc and MFn were calculated using
the following equations [24]:

MFc = ∑rεRMCc(r)
∣R∣ ∗ ∑rεRLOC(r)

∑rεRLOCc(r) (1)

MFn = ∑rεRMCn(r)
∣R∣ ∗ ∑rεRLOC(r)

∑rεRLOCn(r) (2)

Here, R is the number of revisions of the candidate
subject system. MCc(r) and MCn(r) are the number of
modifications (defined in the next paragraph) in the cloned and
non-cloned code regions respectively between revisions r and

(r+1). MFc and MFn are the modification frequencies of the
cloned and non-cloned code regions of the system. LOC(r)
is the number of LOC in revision r. LOCc(r) and LOCn(r)
are respectively the numbers of cloned and non-cloned LOCs
in revision r.

According to the definition of Hotta et al. [24], a modifica-
tion can affect multiple consecutive lines. Suppose, L lines of
a method (or any other program entity) were modified through
additions, deletions or changes. If these L lines are consecutive
then, the count of modification is one. If these L lines are
not consecutive then, the count of modifications equals to the
number of unchanged portions within these L lines plus one.

They performed their empirical study on 15 open source
subject systems incorporating the clone detectors: CCFinderX
[14], Simian [59], and Scorpio [57] with a general conclusion
that cloned code is modified less frequently than non-cloned
code. Thus according to this study cloned code is more stable
than non-cloned code.

B. Modification Probability (MP) proposed by Göde and
Harder

Göde and Harder [19] replicated, extended and validated
Krinke’s study [32] to determine whether clones are respon-
sible for increasing maintenance effort and if does so, to
what extent. In this study, they used an incremental token-
based clone detection tool. They calculated the modification
probabilities of cloned and non-cloned code with respect to
addition, deletion and modification according to the following
equations.

Modification probability of cloned code (MPc) was calcu-
lated using the following equation.

MPc = ∑rεRAc(r) +Dc(r) +Cc(r)
∑rεR Tokc(r) (3)

Modification probability of non-cloned code (MPn) was
determined using the equation given below.

MPn = ∑rεRAn(r) +Dn(r) +Cn(r)
∑rεR Tokn(r) (4)

In the above equations, R is the set of all revisions of
the candidate subject system. Ac(r), Dc(r), and Cc(r) are
respectively the total number of tokens added, deleted and
changed (or modified) in the cloned regions of revision r of the
subject system. In the same way, An(r), Dn(r), and Cn(r)
are the total number of tokens added, deleted and modified in
the non-cloned regions of revision r. Tokc(r) and Tokn(r)
are the total number of tokens in respectively the cloned and
non-cloned regions of the subject system.

However, the modification probabilities MPc and MPn
were termed as overall instability of cloned and non-cloned
code in the original study [19]. We named these as modification
probabilities considering the equations Eq. 4.3 and Eq. 4.4.
The right sides of these equations determine the ratios of the
modified tokens to the total number of tokens in cloned and
non-cloned regions respectively.

Göde and Harder performed this study [19] on two open
source Java systems with a general conclusion that cloned code
is more stable than the non-cloned code.

C. Average Last Change Date (ALCD) Proposed by Krinke

Krinke [33] introduced a new concept of code stability
measurement by calculating the average last change dates of
cloned and non-cloned regions of a code-base based on the
blame annotation in the SVN repository. He considers only a
single revision (generally the last revision) (Hotta et al. [24]
considers all the revisions up to the last one as is already
described). He calculates the average last change dates of
cloned (ALCDc) and non-cloned (ALCDn) code from the
file level and system level granularities in the following way.

File level metrics

● Percentage of files where the average last change date
of cloned code is older than that of non-cloned code
(cloned code is older than non-cloned code) in the last
revision of a subject system.

● Percentage of files where the average last change date
of cloned code is newer than that of non-cloned code
(cloned code is younger than non-cloned code) in the
last revision of a subject system.

System level metrics

● Average last change date of cloned code (ALCDc) for
the last revision of a candidate subject system.

● Average last change date of non-cloned code
(ALCDn) for the last revision of a candidate subject
system.

Calculation of average last change date (ALCD): Krinke
calculated the average last change dates in the following way.
Suppose five lines in a file correspond to five revision dates
01-Jan-11, 05-Jan-11, 08-Jan-11, 12-Jan-11, 20-Jan-11. The
average of these dates was calculated by determining the
average distance (in days) of all other dates from the oldest
date 01-Jan-11. This average distance is (4+7+11+19)/4 =
10.25 and thus the average date is 10.25 days later to 01-Jan-
11 yielding 11-Jan-11. We see that this process of calculating
ALCD has the possibility of introducing rounding error. In the
given example, the fraction ‘0.25’ cannot be reflected to the
calculated ALCD. This might force the ALCDs of cloned and
non-cloned code to be equal [41].

According to the average last change date calculation
process described above, we calculate the average last change
date of cloned (ALCDc) and non-cloned (ALCDn) code in
the following ways.

ALCDc = ODCL + ∑lεCL (DATE(l) −ODCL)
∣CL∣ (5)

ALCDn = ODNL + ∑lεNL (DATE(l) −ODNL)
∣NL∣ (6)

In the above equations (Eq. 5 and Eq. 6), ODCL and
ODNL are respectively the oldest change dates of cloned

and non-cloned lines in the last revision of the candidate
subject system. CL and NL are the sets of cloned and non-
cloned lines in the last revision. DATE(l) is the change date
corresponding to the source code line l.

The two ratios in file level metrics were calculated con-
sidering only the analyzable files in the last revision. The
set of analyzable files consists of those files which contain
both cloned and non-cloned code. The files containing no
cloned code and the fully cloned files were excluded from
consideration while determining file level metrics. As these
files contain only cloned or only non-cloned code, none of
these files can determine whether cloned or non-cloned code is
older. File level metric is useful to determine what percentage
of files takes part in defining the stability scenario of cloned
and non-cloned code for a subject system. However, analyzing
this percentage is not the goal of our research. Our aim is
to compare the stability of cloned and non-cloned code. For
this reason, in our experiment we calculated the system level
metrics only. System level metrics are calculated considering
all source files in a code-base. The intuition behind this
methodology is that the older the code is the more stable it is.
That means, if a code region (cloned or non-cloned) remains
unchanged for longer duration compared to the other (non-
cloned or cloned) the former code region can be regarded as
more stable.

Krinke performed this study on three open source Java
systems using Simian [59] clone detector considering only
Type 1 clones with the conclusion that cloned code is more
stable than non-cloned code.

D. Average Age (AA) proposed by Mondal et al.

We have just described Krinke’s methodology [33] for
calculating the average last change date of cloned and non-
cloned lines of a code-base. The outputs of this methodology
are dates. A variant of this methodology proposed by Mondal
et al. [41] analyzes the longevity (stability) of cloned and non-
cloned code by calculating their average ages (in days). This
methodology also uses the blame command of SVN (as was
used by Krinke [33]) to calculate the age for each of the cloned
and non-cloned lines in a subject system.

1) Average Age measurement technique: Suppose we have
several subject systems. For a specific subject system this
methodology works on the last revision ro. By applying a
clone detector on revision ro, the lines of each source file
can be separated into two disjoint sets: (i) one containing all
cloned lines and (ii) the other containing all non-cloned lines.
Different lines of a file contained in ro can belong to different
previous revisions. If the blame command on a file assigns the
revision r to a line x, then it is understood that line x was
produced in revision r and has not been changed up to last
revision ro. The creation date of r is denoted as DATE(r).
In the current revision R, the age (in days) of this line is
calculated by the following equation:

AGE(x) =DATE(ro) −DATE(r) (7)

Two average ages of cloned and non-cloned code were
calculated from system level granularity as follows.

● Average age of cloned code (AAc) in the last revision
of a subject system. This is calculated by considering
all cloned lines of all source files of the system. The
equation for calculating AAc is given below.

AAc = ∑lεCL (LRD −DATE(l))
∣CL∣ (8)

In the above equation, CL is the set of all cloned lines
in the last revision of the candidate subject system.
LRD is the creation date of the last revision of the
subject system. DATE(l) is the last change date of
source code line l.

● Average age of non-cloned code (AAn) in the last
revision of a subject system. AAn is calculated by
considering all non-cloned lines of all source files of
the system in the following way.

AAn = ∑lεNL (LRD −DATE(l))
∣NL∣ (9)

In the above equation, NL is the set of all non-
cloned lines in the last revision of the candidate subject
system.

According to this methodology, a higher average age is
the implication of higher stability. The study [41] using this
methodology was conducted on twelve open-source subject
systems with the general conclusion that cloned code exhibits
higher instability than non-cloned code. Such a finding is con-
tradictory to the findings of the previously described studies.

E. Likelihood and Impact of Methods proposed by Lozano and
Wermelinger

Lozano and Wermelinger performed an in-depth study [37]
to assess the impacts of clones on maintenance by examining
all the revisions of candidate subject systems. Their calcula-
tions were based on method level granularity using CCFinderX
[14] clone detection tool. According to their definition, a
cloned method can be fully or partially cloned (only a portion
of the method is cloned). They detected the methods in
different versions using CTAGS [17]. They also performed
the origin analysis of methods in consecutive revisions to see
how a method gets changed as it passes through multiple
revisions. Using origin analysis they separated the methods
into the following three subsets.

Always cloned methods: An always cloned method con-
tains a cloned portion in it in all revisions in which it remains
alive.

Never cloned methods: A never cloned method contains
no cloned portions in its total lifetime.

Sometimes cloned methods: A sometimes cloned method
contains cloned portions for a limited period of its lifetime.

They calculated the following stability metrics.

Likelihood: The likelihood of change of a method m
during its cloned period (or non-cloned period) is the ratio
between the number of changes to m and the total number of
changes to the system (all methods) during cloned period (or
non-cloned period).

ICC = ∑mεMc
Impactcloned(m) +∑mεMsc

Impactcloned(m)
∣Mc∣ + ∣Msc∣ (10)

Impactcloned(m) =
∑cεCCP (m)CCM(c)

∣CCP (m)∣ (11)

INC = ∑mεMn
Impactnon−cloned(m) +∑mεMsc

Impactnon−cloned(m)
∣Mn∣ + ∣Msc∣ (12)

Impactnon−cloned(m) =
∑cεCNP (m)CCM(c)

∣CNP (m)∣ (13)

LCC = ∑mεMc
Likelihoodcloned(m) +∑mεMsc

Likelihoodcloned(m)
∣Mc∣ + ∣Msc∣ (14)

Likelihoodcloned(m) =
∑cεCCP (m)NCM(m,c)

∑cεCCP (m)∑miεM NCM(mi, c) (15)

LNC = ∑mεMn
Likelihoodnon−cloned(m) +∑mεMsc

Likelihoodnon−cloned(m)
∣Mn∣ + ∣Msc∣ (16)

Likelihoodnon−cloned(m) =
∑cεCNP (m)NCM(m,c)

∑cεCNP (m)∑miεM NCM(mi, c) (17)

Impact: The impact of a method m is denoted by the
average percentage of the system that gets changed whenever
m changes during its cloned period or non-cloned period. This
is calculated by the average number of methods changed on
those commits where method m gets changed.

We calculate the average impact of always cloned methods
and the cloned periods of sometimes cloned methods. We term
this impact as the impact of cloned code (ICC). We calculate
ICC according to Eqs. 10 and 11.

In the equations (Eq. 10 and Eq. 11), Mc, Msc, and Mn are
the sets of always cloned, sometimes cloned and never cloned
methods. Impactcloned(m) is the impact of the cloned period
of method m. CCP (m) is the set of all commits where m
was changed during its cloned period. CCM(c) is the count
of methods changed in commit c.

We also calculate the average impact of never cloned
methods and the non-cloned periods of sometimes cloned
methods. We term this impact as the impact of non-cloned
code (INC). INC is calculated according to Eqs.12 and 13.

In the equations (Eq.12 and Eq. 13), Impactnon−cloned(m)
is the impact of the non-cloned period of method m. CNP (m)
is the set of all commits where m was changed during its
non-cloned period. Other terms are already described for the
equations: Eq. 10 and Eq. 11. We also calculate the likelihood
of cloned (LCC) and non-cloned code (LNC). LCC is the
average likelihood considering always cloned methods and the
cloned periods of the sometimes cloned methods. We calculate
LCC according to the equations - Eq. 14 and Eq. 15.

In the equations (Eq. 14 and Eq. 15), Likelihoodcloned(m)
is the likelihood of the method m during its cloned period.
NCM(m,c) is the number of changes to the method m in
commit c. M is the set of all methods. The remaining terms

in these equations have already been defined. We also cal-
culate LNC, the average likelihood considering never cloned
methods and the non-cloned periods of the sometimes cloned
methods, according to the equations - Eq. 16 and Eq. 17.

In Eq. 17, Likelihoodnon−cloned(m) is the likelihood of
the method m during its non-cloned period.

Lozano and Wermelinger performed this study [37] on
five open source Java systems with a conclusion that cloned
methods are more likely to be modified compared to the
non-cloned methods. Also, cloned methods seem to increase
maintenance efforts considerably.

F. Average instability per cloned method (AICM) proposed by
Lozano and Wermelinger

The methodology proposed in [36] is an improvement of
the previous work [37] and gives more sophisticated analysis
of the impacts of clones. In the previous study [37] several
issues such as clone families, inclusion and exclusion of clones
in families as well as late propagation of changes were not
considered. But, in this study [36] all these matters were
taken into account and many more measurements were made
using the same tools. The implementation and analysis are
based on method-level granularity where the definition of
cloned method remains the same as described in the previous
methodology [37]. We measured the following two metrics
from this methodology, because these are related to code
stability. These two metrics together can help us to determine
whether cloned or non-cloned code is more stable. We term
these two metrics together as average instability per cloned
method (AICM) (as is mentioned before).

Extension per cloned method (EPCM): This metric was
calculated by determining the average proportion of cloned
tokens in the cloned methods at a particular commit.

Proportion of changes to the clones of cloned methods
(CPCM): We calculated this metric by the average ratio
between the number of changes in the cloned tokens and
the total number of changes in the cloned methods up to a
particular commit. This metric is originally termed as Stability
per method by Lozano and Wermelinger [36].

For a particular commit operation we determine EPCM
and CPCM according to the following equations.

EPCM = ∑mεM
CTok(m)×100

Tok(m)

∣M ∣ (18)

CPCM =
∑mεM CTokchanged(m)×100

Tokchanged(m)

∣M ∣ (19)

In the above equations (Eq. 18 and Eq. 19), M is the
set of all cloned methods in a particular commit opera-
tion. CTok(m) is the number of cloned tokens in a cloned
method m and Tok(m) is the number of total tokens in m.
CTokchanged(m) is the number of cloned tokens changed in
the cloned method m. Tokchanged(m) is the number of total
tokens changed in m.

Lozano and Wermelinger performed this study [36] on
five open source subject systems written in Java. According
to their experimental results, cloned methods have a higher
density of changes compared to the non-cloned methods. This
outcome also contradicts with the conclusions drawn by Krinke
[33] and Hotta et al. [24]. According to the explanation
of Lozano and Wermelinger, such a contradiction occurred
because of different setups of the different clone detection tools
incorporated in these studies.

G. Dispersion of Changes (CD)

Mondal et al. [42] proposed and implemented a method-
ology for measuring the dispersions of changes in the cloned
and non-cloned regions considering method level granularity.
According to their definition, change dispersion in a particular
code region (cloned or non-cloned) is the percentage of method
genealogies affected by changes in that region during that
particular period of evolution. As the evolution period they
considered the total duration starting from the first revision
up to the creation of the last revision of a particular software
system. Each of the commit operations in the evolution period
involving some modifications to the source code was taken
into account. Change dispersion is calculated in the following
way.

Calculation of Dispersion: A method (or function in case
of C language) is defined as a cloned method when it contains
some cloned lines in it. According to this methodology [42]
there are two types of cloned methods: (i) fully cloned methods
(all of the lines contained in these methods are cloned lines)
and (ii) partially cloned methods (these methods contain some
non-cloned portions in them). For calculating the dispersion of
cloned code, the changes in the cloned portions of the cloned
(fully or partially) methods are considered. Partially cloned
methods are also considered while calculating the dispersion
of non-cloned code because, changes might occur in the non-
cloned portions of the partially cloned methods. Moreover,

while determining method genealogies it might be seen that a
partially cloned method has become fully cloned or fully non-
cloned after receiving a change. These methods are considered
in calculating the dispersions of both cloned and non-cloned
code.

Suppose, for a subject system, the sets of cloned and non-
cloned method genealogies are C and N respectively. Cc is the
set of cloned method genealogies which received some changes
in their cloned portions during the evolution. The number of
changes received by the genealogies in the set Cc is generally
greater than ∣Cc∣, because a particular method genealogy can
experience multiple changes during evolution. In the same way,
Nc is the set of non-cloned method genealogies that received
some changes in their non-cloned portions. The dispersion of
changes in cloned code (CDc) and non-cloned code (CDn)
were expressed by the following equations.

CDc = ∣Cc∣ × 100

∣C ∣ (20)

CDn = ∣Nc∣ × 100

∣N ∣ (21)

Implementation of this methodology requires the extraction
of method genealogies. We extracted method genealogies using
the algorithm proposed by Lozano and Wermelinger [37].
According to the study [42], cloned code generally shows
higher change dispersion compared to non-cloned code. Thus,
cloned code is expected to require higher maintenance effort
than non-cloned code.

V. EXPERIMENTAL STEPS

We implemented the seven (all known) stability measure-
ment methodologies described in the previous section using
two clone detection tools for conducting this experiment.
While three of these methodologies [36], [37], [42] calculate
the respective stability metrics considering method level gran-
ularity, the remaining four methodologies [19], [24], [33], [41]
calculate using block granularity. In the following subsections
we describe the sequential steps for calculating the candidate
metrics.

A. Extraction of Repositories.

All of the subject systems on which we applied our
candidate methodologies were downloaded from open-source
SVN repositories. For each system, we extracted only those
revisions which were created because of some source code
modification (addition, deletion or change) rather than just
tagging and branching operations. To determine whether a
revision should be extracted or not, we checked the extensions
of the files which were modified to create the revision. If
some of these modified files are source files, we considered
the revision as our target revision and extracted it.

B. Preprocessing.

We applied the following two preprocessing steps to all the
revisions of the subject systems before applying the method-
ologies on them except for Krinke’s methodology [33] and
average age calculation process [41].

(1) Rearrangements of lines so that an isolated left or right
brace (if a left or right brace remains in a line associated with
no other character) was deleted and added at the end of the
previous line.

(2) Deletion of blank lines and comments.

These preprocessing steps were done to avoid the effects
of changes to the comments and indentations on the calculated
metrics.

It was not possible to apply the mentioned preprocessing
steps in case of Krinke’s methodology [33] and its variant
because these work on the output of SVN blame command for
a specific file, not on the original file. For these methodologies
(Krinke’s methodology [33], and the average age calculation
methodology [41]), we just ignored the blank lines and com-
ments from blame command output.

C. Detection of method.

In order to detect the methods of a specific revision we
applied CTAGS [17] on the source files of that revision. For
each method we determined its (1) file name, (2) class name
(Java and C# systems), (3) package name (Java), (4) method
name, (5) signature, (6) starting and ending line numbers, and
(7) revision number

In case of the subject systems written in C, we determined
five properties from the above list excluding class name and
package name. We detected the methods for all target revisions.
The method detection process for a particular revision can be
made faster by reusing the methods stored for the immediate
previous revision. If we have completed the detection and
storage activities for revision ri, we do not need to apply
CTAGS [17] for the source files which remain unchanged
in revision ri+1. Methods of these unchanged files can be
retrieved from the database and forwarded to the ri+1. We
apply CTAGS [17] only to those source files which received
some changes while being forwarded from ri to ri+1. However,
we do not store the methods in the database at this stage
because we need the information about which methods have
clones and which methods have got changed before being
forwarded to the next revision.

D. Clone Detection

As noted previously, we applied NiCad [50] and CCFind-
erX [14] clone detection tools to each target revision to detect
clone blocks. These clone blocks were then mapped to the
already detected methods of this revision by comparing the
beginning and ending line numbers of clone blocks and meth-
ods. So, for each method we collect the beginning and ending
cloned line numbers (if exist). CCFinderX currently outputs
the beginning and ending token numbers of clone blocks. We
automatically retrieve the corresponding line numbers from the
generated preprocessed files. We store the clones as well as
clone families detected from a revision in the database. We
used the following setups for the clone detection tools.

Setup for CCFinderX: CCFinderX [14] is a token based
clone detection tool that currently detects block clones of Type-
1 and Type-2. We set CCFinderX to detect clone blocks of
minimum 30 tokens with TKS (minimum number of distinct
types of tokens) set to 12 (as default).

TABLE III: NiCad Settings

Clone Types Identifier Renaming Dissimilarity Threshold

Type 1 none 0%
Type 2 blindrename 0%
Type 3 blindrename 20%

Setup for NiCad: NiCad [16] can detect both exact and
near-miss clones at the function or block level of granularity.
We detected block clones with a minimum size of 5 LOC in the
pretty-printed format that removes comments and formatting
differences. We used the NiCad settings in Table III for
detecting three types of clones. The dissimilarity threshold
means that the clone fragments in a particular clone class
may have dissimilarities up to that particular threshold value
between the pretty-printed and/or normalized code fragments.
We set the dissimilarity threshold to 20% with blind renaming
of identifiers for detecting Type 3 clones. These settings of
NiCad are considered standard [52]–[55] and for all these
settings NiCad was shown to have high precision and recall
[51], [52]. Also, the settings that we have used for CCFinderX
are considered equivalent to those of NiCad [39].

E. Detection and Reflection of Changes

We identified the changes between corresponding files of
consecutive revisions using UNIX diff command. diff outputs
three types of changes: (1) addition, (2) deletion, and (3)
modification

with corresponding line numbers. We mapped these
changes to methods using line information. So, for each
method we gathered two more pieces of information: (1) the
count of lines changed in cloned portions and (2) the count
of changed lines in non-cloned portions. We map the changes
to methods, and also store the changes in the database with
corresponding line information.

F. Storage of Methods

At this stage, we have all necessary pieces of information
of all methods belonging to a particular revision. We store
these methods in database with individual entry for each
method. The attributes that we store for a particular method
have already been listed in Section V-C. We do not store the
statements inside a method. For each of the revisions of a
particular software system we detected the methods along with
cloning and change information and stored the methods in the
database. So, our database contains different method sets for
different revisions: one set for each revision.

G. Method Genealogy Detection

After completing method detection and storage for all
revisions of a subject system, we detected method genealogies
following the technique proposed by Lozano and Wermelinger
[37] to identify the propagation of methods across revisions.
Suppose a method was created in revision ri and was alive
and propagated to the next two revisions ri+1 and ri+2 with
or without some changes. So, this method has corresponding
entries in all of these three revisions. By detecting method
genealogies we can identify these entries as belonging to the
same method. For detecting genealogies we assign a single

TABLE IV: Subject Systems

Systems Domains LLR Revisions

Ja
va

DNSJava DNS protocol 23,373 1635
Ant-Contrib Web Server 12,621 176
Carol Game 25,092 1699
jabref Reference Management 59,648 3000

C

Ctags Code Definition Generator 33,270 774
Camellia Multimedia 100,891 608
QMail Admin Mail Management 4,054 317
GNUMake
Uniproc

Auto-build system for C/C++
projects

75,745 863

C
#

GreenShot Multimedia 37,628 999
ImgSeqScan Multimedia 12,393 73
Capital Resource Database Management 75,434 122
MonoOSC Formats and Protocols 18,991 355

LLR = LOC in Last Revision

unique ID to all of the entries of a particular method residing
in different revisions.

H. Metrics Calculation

After completing all the steps described above for a par-
ticular subject we calculated the metrics. We calculate four
metrics: (1) impact, (2) likelihood, (3) AICM (Average Insta-
bility per Cloned Method), and (4) CD (Change Dispersion)
using the method information stored in the database. The
remaining four metrics: (5) MF (Modification Frequency),
(6) MP (Modification Probability), (7) ALCD (Average Last
Change Date), and (8) AA (Average Age) are calculated using
the information stored for clones and changes.

VI. SUBJECT SYSTEMS

Table IV lists the subject systems that were included in our
study along with their associated attributes. We downloaded
the subject systems from SourceForge1. The subject systems
are of diverse variety in terms of the followings.

(1) Application domains: The candidate systems span 10
different application domains as mentioned in Table IV.

(2) Implementation language: The systems cover three
programming languages: Java, C, and C#.

(3) System size: The systems are of different sizes, from
very small (4 KLOC) to large (100 KLOC).

We have also systematically replicated the original studies.
For the purpose of replication with original setups, we down-
loaded the subject systems used in the original studies and
carried out the same analysis steps as in the original studies.
We analyzed 16 additional subject systems written in Java, C
and C++ of various sizes, application domains and lengths of
revision history. The details of the replication experiments are
presented in Section VII-H.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we presented the results obtained for eight
stability metrics in eight tables. The corresponding analysis for
each of these metrics (as well as table data) is also given in
this section.

1SourceForge: http://sourceforge.net/

Normalization of metric values: The values correspond-
ing to five candidate metrics: modification probability, impact,
likelihood, change dispersion, and average instability per
cloned method (EPCM, CPCM) are normalized within the
range zero to one. The equations for calculating modification
probabilities (Eq. 3, Eq. 4), impacts (Eq. 10, Eq. 12), and
likelihoods (Eq. 14, Eq. 16) provide us values which are
normalized within zero to one. However, the equations for
calculating change dispersions (Eq. 20, Eq. 21), EPCMs (Eq.
18), and CPCMs (Eq. 19) give us percentages. We normalize
these percentages within zero to one by dividing them by 100.
We performed this normalization because we wanted the values
of the metrics in the same range.

However, it was not possible to normalize the values of the
remaining three metrics: modification frequency, average last
change date, and average age in a particular range (e.g. zero
to one) because of the following reasons.

(1) None of these metrics has a fixed upper bound.

(2) The values corresponding to the metrics average last
change date and average age are dates and ages (in days)
respectively.

The experimental results corresponding to each metric
can be broadly divided into two categories based on the
discrimination power of the clone detectors:

(1) Individual type results: These results assist us to
analyze the influence of each type of clones on the stability
measurement metrics individually. Individual type results were
obtained by applying NiCad clone detector, because it not only
detects the three major types (Type 1, Type 2 and Type 3) of
clones in a combined way but also facilitates the separation
of three types clones from one another. NiCad detects clones
by separating them into individual classes. Generally, Type 2
clone detection results of NiCad include Type 1 clone classes.
In the same way, the results obtained by detecting Type 3
clones include both Type 1 and Type 2 clone classes. To get
the exact Type 2 clone classes we excluded Type 1 classes from
Type 2 results. In the same way, exact Type 3 clone classes
were obtained by excluding Type 2 and Type 1 classes from
Type 3 results. However, separation of individual clone types
is not possible with CCFinderX.

(2) Combined type results: These results help us to
analyze the combined effect of three types of clones on
the stability measurement metrics. We used both NiCad and
CCFinderX to get these results. For determining the combined
impacts of three types of clones using NiCad, we used the
Type 3 clone detection results without excluding Type 1 and
Type 2 classes. We also used CCFinderX to get combined type
results. However, CCFinderX detects only Type 1 and Type 2
clones.

For each metric we present a table containing both individ-
ual type and combined type results. We interpreted the tables
as consisting of decision points as was done by Mondal et al.
[39].

Decision point: A particular decision point consists of the
followings.

(1) Metric value for cloned code,

(2) Metric value for non-cloned code, and

(3) A remark indicating the comparative stability of cloned
and non-cloned code considering that metric value.

The decision points regarding the individual type results
reflect the stability scenario of three types (Type 1, Type
2, Type 3) of clones. The overall stability of cloned code
combining three clone-types is reflected by the decision points
regarding the combined type results.

Mondal et al. [39] categorized the decision points into three
categories by calculating an eligibility value for each decision
point and by determining whether the eligibility value exceeds
a threshold value or not. They considered a threshold value
of 10 in their research work. In this research work, we also
categorize the decision points in the same way considering
this threshold value. The categories of the decision points are
described below.

● Category 1 (CLONES MORE STABLE): For each
of the points belonging to Category 1, two conditions
hold: (1) the eligibility value is greater than the
threshold value, and (2) cloned code appears to be
more stable than non-cloned code. These points are
marked with ⊕.

● Category 2 (CLONES LESS STABLE): For each of
the points belonging to this category, two conditions
hold: (1) the eligibility value is greater than the
threshold value, and (2) cloned code appears to be less
stable than non-cloned code. These points are marked
with ⊖.

● Category 3 (NEUTRAL): For each of the points
belonging to this category, the eligibility value is less
than the threshold value. Such a point is regarded as
an insignificant decision point and is marked with ◯.

Eligibility Value: The following equation calculates eligi-
bility value for each decision point.

Eligibility V alue = (HMV −LMV) ∗ 100
LMV

(22)

Here, HMV is the higher value of the metric values
corresponding to cloned and non-cloned code for a particular
decision point. LMV is the smaller one of the two metric
values corresponding to cloned and non-cloned code for that
decision point. If this eligibility value corresponding to a
particular decision point is greater than or equal to a threshold
value 10, as was selected by our previous study [42], we say
that the decision point is significant and falls in Category 1 or
Category 2. We select the threshold magnitude of eligibility
value in such a way that, it will force a decision point
having larger but very near metric-values (such as 41 and
40. Eligibility Value = (41-40)*100/40 = 2.5) to be selected
as insignificant while a decision point with smaller but near
metric-values (such as 3 and 4. Eligibility Value = 33.33) to
be selected as significant which is expected.

We analyze the comparative stability of cloned and non-
cloned code considering the significant decision points (be-
longing to Category 1 and Category 2). We do not consider
the insignificant points (belonging to Category 3) because in
case of such a decision point the two stability metric values
regarding the cloned and non-cloned code are almost the same

(i.e., the difference between the values is negligible). In our
experiment, the amount of insignificant decision points is very
low compared to the significant decision points. Considering
all the eight metrics, we have 480 decision points in total.
While only 46 of these points belong to Category 3 (i.e.,
insignificant decision points), respectively 196 and 238 points
belong to Category 1 and Category 2.

The eligibility value calculation technique [39] could not
be applied for the decision points corresponding to the metrics:
average last change date (ALCD), average age (AA), and
average instability per cloned method (AICM). We cannot
calculate eligibility values for these exceptions, because: (1)
dates are ordinal, not cardinal, so any difference is significant,
(2) average age and AICM require detailed analysis (Sections
VII-D and VII-F).

We analyzed the results obtained for each metric individ-
ually from the following four perspectives.

(1) Overall analysis: This analysis is based on the com-
bined type results. Considering the combined type results from
each clone detector (NiCad, CCFinderX) in each table we
calculated three proportions: (i) the proportion of decision
points belonging to Category 1 (CLONES MORE STABLE),
(ii) the proportion of the decision points belonging to Category
2 (CLONES LESS STABLE), and (iii) the proportion of the
decision points belonging to Category 3 (NEUTRAL). We
show these proportions in a bar-graph and provide our analysis
on these. The following example will explain this.

Example: We first consider the 12 decision points in Table
V under the heading, NiCad-Combined. We see that 4 points
(33.33% of the 12 decision points) are insignificant (belong
to Category 3). According to 3 decision points (i.e., 25%
of the 12 decision points under NiCad-Combined category),
cloned code appear to be less stable than non-cloned code.
The opposite is true for remaining 5 decision points (41.67%
of 12 decision points). Disregarding the insignificant points
we can say that according to NiCad clone detector, cloned
code is generally less frequently modified compared to non-
cloned code. In the same way, we also analyze the 12 decision
points under CCFinderX-Combined category. Fig. 2 shows a
bar-graph that indicates the percentages of different categories
of decision points considering NiCad-Combined results and
CCFinderX-Combined results separately.

(2) Programming-language centric analysis: We com-
pare the stabilities of cloned and non-cloned code with respect
to the three programming languages in language centric anal-
ysis. Here, we also identify which language exhibits higher
instability of clones according to which stability metric. This
analysis is based on combined type results. In each table for
a particular metric, we get four decision points under the
combined-type category of each clone detector. Considering
these four decision points, we determine the proportion of
decision points belonging to Category 1, Category 2, and
Category 3. We present a graph for each metric showing the
proportions regarding each clone detection tool (NiCad, and
CCFinderX).

Example: As an example, all the 4 points belonging to
Java in Table V under the heading CCFinderX-Combined
are significant. Among these significant points, 3 points (75%
of the points) belong to Category 2 (CLONES LESS STABLE)

and 1 point (25% of the points) belongs to Category 1
(CLONES MORE STABLE). If we consider the 4 decision
points for Java under the NiCad-Combined heading, we
see that the percentages of decision points under the three
categories: Category 1, Category 2, and Category 3 are 0%
(no decision points under Category 1), 25% (one decision point
under Category 2), and 75% (3 insignificant decision points).
Fig. 3 shows the language centric analysis result for Table V.

(3) Type-centric analysis: Our type-centric analysis for
each metric is based on the individual-type results (denoted by
Type 1, Type 2, and Type 3). Each table for a particular metric
contains 12 decision points belonging to a particular clone-
type. We calculate the proportions of decision points belonging
to three categories: Category 1, Category 2, and Category 3
considering these points. The following example will explain
this.

Example: Table V contains the individual type results
(under the headings Type 1, Type 2, and Type 3) obtained by
applying Hotta et al.’s methodology on twelve subject systems.
If we consider the decision points belonging to Type 1, we
see that 8 points belong to Category 1 (CLONES MORE
STABLE), 3 points belong to Category 2 (CLONES LESS
STABLE), and the remaining one point belongs to Category 3
(NEUTRAL). We see that while 66.7% (8 x 100 / (8+3 + 1) =
66.7) of these points belong to Category 1, only 25% and 8.3%
points belong to Category 2 and 3 respectively. Fig. 4 shows
the type centric analysis result for modification frequency.

(4) Type-centric analysis for each language: This anal-
ysis is also based on the individual type results. In the table
corresponding to a metric, four points belong to a particular
clone type (Type 1, Type 2, or Type 3) of a particular
language. From these four points we determine the proportions
of decision points belonging to Category 1, 2, and 3. For each
metric we draw a graph showing the type-centric analysis result
for each language. The following example will explain this.

Example: Among the four points belonging to Type 3 case
of Java in Table V: (i) two points belong to Category 1, (ii)
one point belongs to Category 2, and (iii) one point belongs
to Category 3. So, the percentages of the points belonging
to Category 1, 2, and 3 are 50% (2 x 100 / 4) = 50), 25%,
and 25% respectively. Fig. 5 shows the percentages for every
combination of clone-type and language for this table.

However, we see that for a single metric, our type-centric
analysis for a particular programming language depends only
on four decision points (for each combination of language
and clone type). We present a cumulative analysis in Section
VIII-C considering eight metrics. In this analysis, we take
language-wise type-centric decisions considering 32 decision
points obtained from all combinations of languages and clone-
types.

We also present cumulative analyses from different dimen-
sions in Section VIII considering the results obtained for all
the metrics. In the following subsections we present our four-
dimensional analysis of the experimental results obtained for
each of the eight metrics.

NiCad-Combined CCFinderX-Combined
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 2: Overall analysis for modification frequency.

Java C C# Java C C#
0

20

40

60

80

100

NiCad-Combined CCFinderX-Combined

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 3: Language centric statistics for modification frequency

A. Analysis of the Experimental Results Regarding Modifica-
tion Frequency

Hotta et al. [24] calculated the modification frequencies of
cloned (MFc) and non-cloned (MFn) code according to Eq. 1
and Eq. 2 and argued that cloned code changes less frequently
than non-cloned code in general. Using our implementations
of Hotta et al.’s methodology (using CCFinderX and NiCad)
we calculated the modification frequencies of cloned and non-
cloned code of each of the subject systems and populated the
Table V. For a particular significant decision point in this table,

(i) if MFc < MFn, then changes to the cloned code are
less frequent compared to the changes to non-cloned code and
this point falls in Category 1 (CLONES MORE STABLE)

(ii) if MFc > MFn, then changes to the cloned code are
more frequent compared to the changes to non-cloned code
and this point falls in Category 2 (CLONES LESS STABLE).

The following four sections of analysis answer the first
research question RQ1 from four directions.

Overall analysis: Considering the 12 decision points under
the heading NiCad-Combined in Table V, we see that: (i)
41.67% of the points (5 points) belong to Category 1 (CLONE
MORE STABLE), (ii) 25% of the decision points (3 points)
belong to Category 2 (CLONE LESS STABLE), and (iii) the
remaining 33% of the points (4 points) belong to Category
3 (NEUTRAL). Thus, according to NiCad clone detector,
code clones are generally less frequently modified compared
to non-cloned code. Such a finding confirms Hotta et al.’s
finding. We also determine the three percentages considering
the 12 decision points under CCFinderX-Combined heading.
These percentages are: 50%, 50% and 0% respectively for
Category 1, 2, and 3. As the percentages regarding Category

TABLE V: Modification Frequencies by Hotta et al.’s methodology

Type 1 Type 2 Type 3 NiCad-Combined CCFinderX-Combined
Systems MFc MFn Rem MFc MFn Rem MFc MFn Rem MFc MFn Rem MFc MFn Rem

Ja
va

DNSJava 27.91 8.69 ⊖ 11.93 10.48 ◯ 10.62 10.61 ◯ 10.40 10.66 ◯ 16.94 7.66 ⊖
Ant-Contrib 9.96 4.09 ⊖ 3.18 4.27 ⊕ 3.76 4.41 ⊕ 4.12 4.4 ◯ 2.58 4.91 ⊕
Carol 10.11 18.05 ⊕ 11.70 11.70 ◯ 19.52 17.21 ⊖ 26.06 15.55 ⊖ 21.89 16.32 ⊖
jabref 17.67 22.46 ⊕ 16.38 22.53 ⊕ 19.83 22.68 ⊕ 20.23 20.86 ◯ 62.06 7.59 ⊖

C

Ctags 11.13 7.83 ⊖ 13.48 7.78 ⊖ 9.37 7.81 ⊖ 10.16 7.74 ⊖ 8.932 7.86 ⊖
Camellia 18.50 18.04 ◯ 42.37 17.73 ⊖ 30.02 17.53 ⊖ 34.59 17.31 ⊖ 47.02 14.20 ⊖
QMail Admin 45.99 51.50 ⊕ 56.41 50.75 ⊖ 56.14 50.69 ⊖ 50.95 51.36 ◯ 39.15 22.07 ⊖
Gnumakeuniproc 32.25 39.74 ⊕ 74.06 37.70 ⊖ 78.64 36.50 ⊖ 35.04 38.82 ⊕ 35.69 40.33 ⊕

C
#

GreenShot 4.13 9.62 ⊕ 7.62 9.59 ⊕ 8.65 9.60 ⊕ 8.54 9.63 ⊕ 8.35 9.85 ⊕
ImgSeqScan 0 24.97 ⊕ 0 25.28 ⊕ 0 25.43 ⊕ 0 25.67 ⊕ 11.82 28.68 ⊕
Capital Resource 0 31.69 ⊕ 0 31.37 ⊕ 12.18 31.48 ⊕ 9.87 31.57 ⊕ 22.61 34.25 ⊕
MonoOSC 7.09 22.71 ⊕ 15.18 22.53 ⊕ 13.09 22.78 ⊕ 13.03 22.84 ⊕ 15.46 23.59 ⊕

MFc= Modification Frequency of Cloned Code MFn= Modification Frequency of Non-Cloned Code Rem = Remark
⊕= MFc <MFn (Category 1, CLONES MORE STABLE) ⊖= MFc >MFn (Category 2, CLONES LESS STABLE)
◯= The decision point falls in Category 3

Type 1 Type 2 Type 3
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 4: Type centric statistics for modification frequency.

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3
0

20

40

60

80

100

Java C C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 5: Language-wise type centric statistics for modification
frequency

1 and 2 are the same, we could not come to a concluding
decision about the comparative modification frequencies of
cloned and non-cloned code from CCFinderX results. We
show the percentages for the two clone detectors in Fig. 2.

Language Centric Analysis: For language centric analysis
on Table V, we present the graph in Fig. 3. We see that in case
of both Java and C languages, the percentage of decision points
in Category 2 is higher than the corresponding percentage in
Category 1 for each clone detector. From Table V we realize
that the overall percentages in Fig. 2 were mostly influenced
by the Category 1 decision points from C# language. From
Fig. 3 we see that all the decision points regarding C# are
of Category 1 (CLONES MORE STABLE). From language
centric analysis we finally decide that code clones in both Java

and C programming languages exhibit higher instability than
non-cloned code. The opposite is true for C# language.

Type Centric Analysis: From the type centric statistics in
Fig. 4 constructed from Table V we see that for each of the
three clone-types (Type 1, Type 2, and Type 3), the highest
proportion of decision points belong to Category 1 (CLONES
MORE STABLE) and agree with lower modification frequency
of cloned code. Thus, we can say that each of the three types
of clones are likely to receive less frequent changes compared
to the non-cloned code in general.

Type Centric Analysis for Each Language: For this
analysis we draw the graph in Fig. 5 from Table V. According
to this graph, both Type 2 and Type 3 clones of programming
language C have a very high probability of getting more
frequent changes compared to non-cloned code. From the
graphs in Fig. 4, and 5 we can say that although each of the
three types of clones (Type 1, Type 2, Type 3) appear to receive
less frequent changes in general, Type 2 and Type 3 clones are
likely to receive more frequent changes than non-cloned code
in case of the subject systems written in C.

Answer to RQ 1: According to our overall analysis in-
volving the combined-type results, code clones generally
get modified less frequently compared to non-cloned code.
Such a finding complies with the finding in the original
study done by Hotta et al. [24]. They used CCFinderX
[28] clone detector. We have also used it. We have used
another clone detector, the NiCad clone detector [16],
which was not used in the original study [24]. NiCad
can detect code clones by separating them by clone-
types, and also, it can detect Type 3 clones. CCFinderX
cannot detect Type 3 clones. As we use NiCad clone
detector, we perform clone-type centric analysis of our
experimental results. We also perform language centric
analysis. Language centric and clone-type centric analyses
were not performed in Hotta et al’s study [24].

From our language centric analysis (Fig. 3) we find
that code clones in Java and C systems often get modified
more frequently compared to non-cloned code in such
systems. Type 2 and Type 3 clones in C systems should
be given higher priority for management, because such

NiCad-Combined CCFinderX-Combined
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 6: Overall statistics for modification probability.

Java C C# Java C C#
0

20

40

60

80

100

NiCad-Combined CCFinderX-Combined

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 7: Language centric statistics for modification probability

clones have always been more unstable (i.e., have always
been modified more frequently) than non-cloned code
according to our analysis (Fig. 5).

B. Analysis of the Experimental Results Regarding Modifica-
tion Probability

Using our implementation of Göde et al.’s [19] methodol-
ogy we calculated the modification probabilities of cloned and
non-cloned code of our candidate systems using the equations:
Eq. 3 and Eq. 4 and populated the results in Table VI. For a
particular significant decision point in this table,

(i) if MPc < MPn, then clone has lower probability of
getting changes compared to the probability of non-cloned
code and this point falls in Category 1 (CLONES MORE
STABLE)

(ii) if MPc > MPn, then clone has higher probability of
getting changes compared to the probability of non-cloned
code and this point falls in Category 2 (CLONES LESS
STABLE)

We answer the second research question RQ 2 from four
dimensions as follows.

Overall analysis: We show the overall statistics for mod-
ification probability in the graph of Fig. 6 considering the
combined-type results in Table VI. We see that each of the
two clone detectors (NiCad and CCFinderX) suggest a higher
modification probability of cloned code compared to non-
cloned code. In other words, the proportion of source code
lines affected in the clone regions per commit operation is

Type 1 Type 2 Type 3
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 8: Type centric statistics for modification probability.

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3
0

20

40

60

80

100

Java C C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 9: Language-wise type centric statistics for modification
probability

generally greater than the proportion of lines affected in the
non-clone regions.

Language centric analysis: We draw the graph in Fig. 7
from Table VI for this analysis. We see that in the cases of Java
and C languages the proportion of decision points belonging to
Category 2 (CLONE LESS STABLE) is much higher than the
proportion of decision points belonging to Category 1 (CLONE
MORE STABLE). In the cases of Java, no decision points
belong to Category 1. Thus, code clones in both Java and
C systems exhibit higher modification probability than non-
cloned code in general. From the bars regarding C# it seems
that code clones in C# systems have a tendency of showing a
lower modification probability compared to non-cloned code.

Type Centric Analysis: We constructed the graph in
Fig. 8 from Table VI for observing the type centric statistics.
According to this graph, both Type 1 and Type 3 clones have a
slightly higher modification probability compared to the Type
2 clones.

Type centric analysis for each language: We draw the
graph in Fig. 9 from Table VI for this analysis. According to
the graph, each of the three clone-types (Type 1, Type 2, and
Type 3) of C exhibits higher modification probability compared
to non-cloned code. However, in case of Java, only Type 3
is unstable because, 75% of the points belonging to Type
3 shows a higher modification probability of cloned code. We
also see that code clones of each clone-type in C# are generally
more stable than non-cloned code.

TABLE VI: Modification Probability by Göde et al.’s methodology

L
an

g Type 1 Type 2 Type 3 NiCad-Combined CCFinderX-Combined
Systems MPc MPn Rem MPc MPn Rem MPc MPn Rem MPc MPn Rem MPc MPn Rem

Ja
va

DNSJava 0.004926 0.000641 ⊖ 0.002260 0.001636 ⊖ 0.001980 0.001628 ⊖ 0.001942 0.001626 ⊖ 0.002786 0.001116 ⊖
Ant-Contrib 0.005800 0.000728 ⊖ 0.000359 0.000855 ⊕ 0.001079 0.000796 ⊖ 0.001454 0.000723 ⊖ 0.000844 0.000827 ◯
Carol 0.000599 0.000818 ⊕ 0.000521 0.000826 ⊕ 0.000928 0.000780 ⊖ 0.001132 0.000682 ⊖ 0.001050 0.000716 ⊖
jabref 0.000390 0.000466 ⊕ 0.000412 0.000467 ⊕ 0.000405 0.000469 ⊕ 0.000256 0.000246 ◯ 0.001555 0.000099 ⊖

C

Ctags 0.001048 0.000958 ⊖ 0.001157 0.000955 ⊖ 0.000689 0.000981 ⊕ 0.000790 0.000974 ⊕ 0.000943 0.000962 ◯
Camellia 0.001655 0.000572 ⊖ 0.002405 0.000567 ⊖ 0.001539 0.000551 ⊖ 0.001665 0.000536 ⊖ 0.001712 0.000425 ⊖
QMail
Admin

0.005822 0.003326 ⊖ 0.006150 0.003326 ⊖ 0.007129 0.003052 ⊖ 0.006266 0.00304 ⊖ 0.002419 0.001444 ⊖

Gnumake
Uniproc

0.000304 0.000328 ◯ 0.000590 0.000319 ⊖ 0.000660 0.000308 ⊖ 0.000367 0.000319 ⊖ 0.000309 0.000543 ⊕

C
#

GreenShot 0.001360 0.000934 ⊖ 0.000778 0.000944 ⊕ 0.001000 0.000938 ⊖ 0.001130 0.000929 ⊖ 0.001087 0.000920 ⊖
ImgSeqScan 0 0.024880 ⊕ 0 0.025192 ⊕ 0 0.025340 ⊕ 0 0.0255783 ⊕ 0.014523 0.027462 ⊕
Capital Re-
source

0 0.000988 ⊕ 0 0.000978 ⊕ 0.000209 0.000983 ⊕ 0.000169 0.000986 ⊕ 0.001175 0.000912 ⊖

MonoOSC 0.001018 0.003862 ⊕ 0.001246 0.003833 ⊕ 0.001177 0.003902 ⊕ 0.001289 0.003914 ⊕ 0.001618 0.004126 ⊕
MPc= Modification Probability of Cloned Code MPn= Modification Probability of Non-Cloned Code Rem = Remark
⊕= MPc <MPn (Category 1, CLONES MORE STABLE) ⊖= MPc >MPn (Category 2, CLONES LESS STABLE)
◯= The decision point falls in Category 3

Answer to RQ 2: Our analysis on the combined-
type clone detection results (Fig. 6) indicates that code
clones generally have a higher probability of getting
modified than non-cloned code. Such a finding contradicts
with the finding of the original study done by Göde et
al. [19]. Göde et al. used iClones [20] in their study,
and investigated only two systems written in Java. We
have used CCFinderX [28] and NiCad [16] in our study,
and investigate 12 systems covering three programming
languages: Java, C, and C#. Possibly, these are the reasons
why our finding contradicts with the original one. We
believe that our finding is more generalized with two clone
detectors and a wide variety of subject systems.

Göde et al. did not perform any clone-type centric or
language centric analysis. We perform such analyses in
our study. We find (Fig. 7) that code clones in Java and
C systems exhibit higher possibility of getting modified
compared to non-cloned code. From Fig. 9 we see that
Type 3 clones of Java systems, and all three types of clones
in C systems exhibit higher modification probability than
non-cloned code. Code clones in C# systems appear to be
more stable than non-cloned code in such systems.

C. Analysis of the Experimental Results for Average Last
Change Date

We calculated the average last change dates of the cloned
(ALCDc) and non-cloned (ALCDn) code of the selected
last revisions (Table IV) of the candidate subject systems by
applying our implementation of Krinke’s Methodology [33].
ALCDc and ALCDn were calculated using the equations Eq.
5 and Eq. 6 respectively. Table VII contains both combined
type and individual type results. We mentioned (with expla-
nation) that for categorizing the decision points in the tables
for this metric we cannot use the eligibility value calculation
technique [42]. If two dates corresponding to a particular
decision point are different, we considered the decision point
as a significant one. For a particular significant decision point
in Table VII,

NiCad-Combined CCFinderX-Combined
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 10: Overall analysis for average last change date.

Java C C# Java C C#
0

20

40

60

80

100

NiCad-Combined CCFinderX-Combined

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 11: Language centric statistics for average last change date

(i) if ALCDc is older than ALCDn, then this point falls
in Category 1 (CLONES MORE STABLE), because for this
point, changes to non-cloned code are more recent on an
average compared to the changes to the cloned code.

(ii) if ALCDn is older than ALCDc, then this point falls in
Category 2 (CLONES LESS STABLE), because for this point,
changes to the cloned code are more recent on an average
compared to the changes to non-cloned code.

The following four sections of analysis answer the third
research question RQ 3 from four dimensions.

Overall analysis: We draw the graph in Fig. 10 for

TABLE VII: Average Last Change Dates by Krinke’s methodology
L

an
g Type 1 Type 2 Type 3 NiCad-Combined CCFinderX-Combined

Systems ALCDc ALCDn R ALCDc ALCDn R ALCDc ALCDn R ALCDc ALCDn R ALCDc ALCDn R

Ja
va

DNSJava 26-Aug-04 4-Jul-04 ⊖ 16-Nov-04 2-Jul-04 ⊖ 8-Dec-04 1-Jul-04 ⊖ 18-Nov-04 1-Jul-04 ⊖ 17-Aug-04 2-Jul-04 ⊖
Ant-Contrib 14-Sep-06 11-Aug-06 ⊖ 17-Jul-06 11-Aug-06 ⊕ 1-Sep-06 10-Aug-06 ⊖ 26-Aug-06 10-Aug-06 ⊖ 16-Dec-06 1-Aug-06 ⊖
Carol 8-Sep-07 22-Aug-07 ⊖ 7-Sep-07 22-Aug-07 ⊖ 6-Aug-07 23-Aug-07 ⊕ 14-Aug-07 23-Aug-07 ⊕ 14-Aug-07 23-Aug-07 ⊕
jabref 13-Jun-06 4-Jun-06 ⊖ 7-Feb-06 5-Jun-06 ⊕ 13-May-06 5-Jun-06 ⊕ 03-May-06 05-Jun-06 ⊕ 21-Feb-06 8-Jun-06 ⊕

C

Ctags 18-Mar-08 30-Dec-06 ⊖ 29-Dec-06 31-Dec-06 ⊕ 05-Jan-07 31-Dec-06 ⊖ 24-Oct-06 27-Mar-07 ⊕ 15-Nov-05 04-Jan-07 ⊕
Camellia 4-Nov-07 14-Nov-07 ⊕ 17-Jul-08 14-Nov-07 ⊖ 8-Feb-09 9-Nov-07 ⊖ 5-Oct-08 10-Nov-07 ⊖ 26-Jan-08 13-Nov-07 ⊖
QMail
Admin

7-Nov-03 27-Oct-03 ⊖ 13-Nov-03 27-Oct-03 ⊖ 11-Nov-03 27-Oct-03 ⊖ 2-Dec-03 27-Oct-03 ⊖ 13-Oct-03 28-Oct-03 ⊕

Gnumake
Uniproc

27-Aug-09 28-Sep-09 ⊕ 18-Oct-09 27-Sep-09 ⊖ 19-Oct-09 27-Sep-09 ⊖ 10-Jul-09 18-Oct-09 ⊕ 22-Jul-09 04-Oct-09 ⊕

C
#

GreenShot 8-Jun-10 18-Jun-10 ⊕ 19-Jun-10 18-Jun-10 ⊖ 23-Jun-10 18-Jun-10 ⊖ 23-Jun-10 18-Jun-10 ⊖ 13-Jun-10 19-Jun-10 ⊕
ImgSeqScan 19-Jan-11 13-Jan-11 ⊖ 14-Jan-11 13-Jan-11 ⊖ 19-Jan-11 13-Jan-11 ⊖ 19-Jan-11 13-Jan-11 ⊖ 18-Jan-11 12-Jan-11 ⊖
Capital Re-
source

13-Dec-08 12-Dec-08 ⊖ 10-Dec-08 12-Dec-08 ⊕ 11-Dec-08 12-Dec-08 ⊕ 11-Dec-08 12-Dec-08 ⊕ 13-Dec-08 12-Dec-08 ⊖

MonoOSC 25-Jun-09 21-Mar-09 ⊖ 14-Mar-09 21-Mar-09 ⊕ 26-Dec-08 22-Mar-09 ⊕ 14-Mar-09 31-Mar-09 ⊕ 22-Apr-09 01-Mar-09 ⊖
ALCDc= Average Last Change Date of Cloned Code ALCDn= Average Last Change Date of Non-Cloned Code R = Remark
⊕= ALCDc is older than ALCDn (Category 1, CLONES MORE STABLE)
⊖= ALCDc is newer than ALCDn (Category 2, CLONES LESS STABLE) ◯= The decision point falls in Category 3

Type 1 Type 2 Type 3
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 12: Type centric statistics for average last change date.

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3
0

20

40

60

80

100

Java C C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 13: Language-wise type centric statistics for average last
change date

over analysis. We see that in case of each clone detectors,
50% of the decision points belonging to Category 1. The
remaining 50% of the points belong to Category 2. The figure
indicates that cloned code can sometimes be changed more
lately compared to non-cloned code during the evolution of a
software system.

Language centric analysis: Fig. 11 constructed from
Table VII helps us make a language centric decision for this
metric. According to the clone detection results of CCFinderX,
cloned code in the subject systems written in C# has a higher
probability of being changed more lately compared to non-
cloned code. In other words, the clones in C# appear to

be more unstable compared to non-cloned code. An opposite
scenario has been shown by the subject systems written in C.
In case of Java, the same proportion of decision points belong
to both of the two categories: Category 1 and Category 2.
According to NiCad-combined type results, the percentages of
decision points belonging to Category 1 and 2 are the same
for each language.

Type centric analysis: According to the type centric
statistics of the graph in Fig. 12, each of the three types of
clones are likely to be modified more lately compared to non-
cloned code. The graph also indicates that both Type 1 and
Type 3 clones have higher probability of getting more recent
changes in comparison with the Type 2 clones.

Type Centric Analysis for Each Language: According to
the graph in Fig. 13, for all of the significant points belonging
to Type 1 case of Java, average last change date of cloned
code is younger than that of non-cloned code. The same is
true for Type 3 clones of C. Type 2 clones of C and Type 1
clones of C# also show higher probabilities of being changed
more lately. For all other cases, both cloned and non-cloned
code have equal possibilities of being more lately changed.
So, according to this metric, each of the three clone-types of
the selected programming languages is a threat to software
stability during the maintenance phase with Type 1 clones of
Java and Type 3 clones of C being the most unstable ones.

Answer to RQ 3: Our overall analysis involving the
combined-type results implies that cloned and non-cloned
code have equal probabilities of getting changed. In the
original study Krinke [33] found that non-cloned code
gets modified more lately than cloned code. However, this
study was done using Simian clone detector [59] which
can detect Type 1 clones only. We use CCFinderX and
NiCad clone detectors in our study. While CCFinderX
provides combined-type results including Type 1 and
Type 2 clones, NiCad detects three types of clones (Type
1, Type 2, Type 3) and reports them by combining or
separating them by clone-types. The original study [33]
was done on only three Java systems. We investigate 12

NiCad-Combined CCFinderX-Combined
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 14: Overall analysis for average age.

subject systems covering three programming languages
(Java, C, and C#) in our study.

We perform clone-type centric and language centric
analyses in our study. Such analyses were not done by
Krinke [33]. Our type-centric analysis (Fig. 12) demon-
strates that code clones of each of the three clone-types
have a higher likeliness of getting changed more lately
than non-cloned code.

D. Analysis of the Experimental Results Regarding Average
Age

By applying the variant [41] of Krinke’s methodology
[33] we calculated the arithmetic average ages (in days) of
cloned (AAc) and non-cloned (AAn) code of a subject system
considering its last revision as mentioned in the Table IV. AAc
and AAn were calculated according to the equations: Eq. 8 and
Eq. 9 respectively. We present our obtained data for this metric
in Table VIII. We did not apply the eligibility value calculation
technique proposed by Mondal et al. [39] for this metric. In
case of the other metrics where we applied the technique, the
metric values represent the change-proneness of the code base.
However, in this particular metric (Average Age), the metric
values are ages in days. For a particular decision point, if the
average ages of cloned and non-cloned code are different by at
least one day we considered the decision point as a significant
one. For a particular significant decision point in Table VIII,

(i) if AAc > AAn by at least one day, then cloned code is
more stable than non-cloned code for this point and this point
belongs to Category 1 (CLONES MORE STABLE).

(ii) if AAc < AAn by at least one day, then cloned code is
less stable than non-cloned code for this point and this point
belongs to Category 2 (CLONES LESS STABLE).

(iii) if the difference between AAc and AAn is less than
one day, then this point belongs to Category 3 (NEUTRAL).

We answer the fourth research question RQ-4 in the
following four sections.

Overall analysis: We draw the graph in Fig. 14 for our
overall analysis. We see that 50% of the decision points in each
case (NiCad-Combined and CCFinderX-Combined) suggest
that cloned code remains unchanged for longer time compared
to non-cloned code. These points fall in Category 1 (CLONES
MORE STABLE). However, from the graph we realize that

Java C C# Java C C#
0

20

40

60

80

100

NiCad-Combined CCFinderX-Combined

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 15: Language centric statistics for average age

Type 1 Type 2 Type 3
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 16: Type centric statistics for average age.

code clones can sometimes exhibit higher instability than non-
cloned code during evolution.

Language centric analysis: The language centric statistics
(Fig. 15 constructed from Table VIII) of this metric are
almost the same as those of average last change date. The
reason behind this is that each of these metrics are computed
considering the last revision of a candidate subject system.
We see that code clones in C# appear to be more unstable
compared to non-cloned code according to CCFinderX results.
An opposite scenario is exhibited by the decision points in C
(CCFinderX results). In case of Java, the same proportion of
decision points (50%) belong to both Category 1 (CLONES
MORE STABLE) and Category 2 (CLONES LESS STABLE).
According to NiCad results, 50% of the decision points belong
to both of the categories: Category 1 and Category 2 for each
language.

Type centric analysis: The type centric statistics (Fig. 16)

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3
0

20

40

60

80

100

Java C C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 17: Language-wise type centric statistics for average age

TABLE VIII: Average Ages of Cloned and Non-cloned Code

L
an

g Type 1 Type 2 Type 3 NiCad-Combined CCFinderX-Combined
Systems AAc AAn Rem AAc AAn Rem AAc AAn Rem AAc AAn Rem AAc AAn Rem

Ja
va

DNSJava 2386.51 2440.31 ⊖ 2304.85 2442 ⊖ 2282.94 2443.23 ⊖ 2303.49 2443.15 ⊖ 2395.84 2442.42 ⊖
Ant-Contrib 869.21 903.39 ⊖ 927.56 902.93 ⊕ 881.61 903.73 ⊖ 887.52 903.65 ⊖ 776.27 912.83 ⊖
Carol 193.61 210.75 ⊖ 194.65 210.85 ⊖ 226.65 210.04 ⊕ 218.55 210.24 ⊕ 218.89 209.82 ⊕
jabref 1063.87 1072.57 ⊖ 1189.77 1071.64 ⊕ 1094.87 1072.13 ⊕ 1104.97 1071.88 ⊕ 1175.59 1068.58 ⊕

C

Ctags 1050.05 1345.77 ⊖ 1425.36 1344.75 ⊕ 1433.15 1344.46 ⊕ 1498.10 1344.02 ⊕ 1798.81 1339.45 ⊕
Camellia 1066.84 1056.77 ⊕ 810.96 1057.39 ⊖ 604.95 1062.48 ⊖ 730.55 1060.50 ⊖ 984.28 1057.77 ⊖
QMail Admin 2664.22 2674.61 ⊖ 2658.24 2674.62 ⊖ 2660.30 2674.63 ⊖ 2638.87 2674.94 ⊖ 2689.10 2674.36 ⊕
Gnumakeuniproc 255.37 221.64 ⊕ 213.91 222.74 ⊖ 212.97 222.74 ⊖ 301.02 200.93 ⊕ 288.06 215.16 ⊕

C
#

GreenShot 292.88 282.61 ⊕ 282.24 283.24 ⊖ 278.35 283.30 ⊖ 278.35 283.30 ⊖ 287.56 281.98 ⊕
ImgSeqScan 14.0 20.26 ⊖ 18.66 20.25 ⊖ 14.39 20.37 ⊖ 14.39 20.37 ⊖ 14.55 20.65 ⊖
Capital Resource 86.35 86.59 ◯ 89.09 86.57 ⊕ 88.03 86.56 ⊕ 88.03 86.56 ⊕ 85.65 86.64 ◯
MonoOSC 224.43 314.06 ⊖ 325.65 313.54 ⊕ 389.37 312.49 ⊕ 330.32 313.41 ⊕ 276.45 341.93 ⊖

AAc= Average Age of Cloned Code. AAn= Average Age of Non-cloned Code. Rem = Remark
⊕= AAc >AAn (Category 1, CLONES MORE STABLE) ⊖= AAc <AAn (Category 2, CLONES LESS STABLE)
◯= The decision point falls in Category 3

regarding average age follows the type centric statistics of
average last change date. The reason behind this has already
been described in the language centric analysis regarding
average age (AA). We see that each of the three types of
clones has higher probability of getting changed more lately
compared to non-cloned code. In other words, each clone-type
appears to be more unstable than non-cloned code according
to this metric.

Type Centric Analysis for Each Language: The
language-wise type centric analysis result is shown in the graph
of Fig. 17 constructed from Table VIII. This graph is almost
the same as that we obtained for average last change date.
All of the decision points belonging to Type 1 case of Java
indicate smaller longevity of cloned code. For Type 2 and
Type 3 cases of C and Type 1 case of C#, major portions of
the decision points suggest that non-cloned code lives longer
than cloned code. For the remaining 5 cases, both cloned and
non-cloned code exhibit equal probability of being unstable.
So, according to this metric, each of the clone types of each
candidate programming language exhibits high probability of
being more unstable compared to non-cloned code.

We see that the language centric statistics (Fig. 15) is
not agreeing with both type centric statistics (Fig. 16) and
language-wise type centric statistics (Fig. 17). While language
centric statistics suggest cloned code to be more stable than
non-cloned code for two languages Java and C, type centric
statistics for these two languages (Fig. 17) suggest cloned
code to be less stable in general. The fact is that Fig. 15
and Fig. 17 have been constructed from two different sets of
decision points (Fig. 15 is constructed considering the decision
points under the headings NiCad-Combined and CCFinderX-
Combined. Fig. 17 is constructed considering the points under
the headings Type 1, Type 2 and Type 3.) in Table VIII.
While Fig. 15 reflects the combined type results of both NiCad
and CCFinderX, Fig. 17 reflects the individual type results of
NiCad only.

Answer to RQ 4: Our overall analysis on the
combined-type results suggests that code clones often
have smaller longevity than non-cloned code during evo-
lution. Combined-type results were not investigated in the
original study [41]. Only the individual-type results of

NiCad clone detector [16] were considered. Our type-
centric analysis suggests that each of the three types of
clones exhibits higher instability than non-cloned code in
general. Such a finding complies with the finding in the
original study [41].

E. Analysis of the Experimental Results Regarding Impact and
Likelihood

We calculate the followings using our implementation of
the methodology proposed by Lozano and Wermelinger [37].

(1) Impact of cloned code (ICC) using Eq. 10.

(2) Impact of non-cloned code (INC) using Eq. 12.

(3) Likelihood of cloned code (LCC) using Eq. 14.

(4) Likelihood of non-cloned code (LNC) using Eq. 16.

Here, we should note that Lozano and Wermelinger dis-
carded 2.5% of the largest commit operations from each of
their subject systems in order to eliminate the effects of
atypical changes [37]. An atypical change is a change that
affects multiple functionalities. We have also discarded 2.5%
of the largest commits from each of our candidate systems
when calculating the impact and likelihood measures. These
measures for cloned and non-cloned code are shown in Tables
IX, X respectively. For a particular significant decision point
contained in Table IX,

(i) if ICC < INC, then this point falls in Category 1
(CLONES MORE STABLE)

(ii) if ICC > INC, then this point falls in Category 2
(CLONES LESS STABLE)

Also, for a particular significant decision point contained
in Table X,

(i) if LCC < LNC, then this point falls in Category 1,
because for this point, cloned code is less likely to be changed
compared to non-cloned code.

(ii) if LCC > LNC, then this point falls in Category 2,
because for this point, cloned code is more likely to be changed
than non-cloned code.

TABLE IX: Impact of cloned and non-cloned code by the methodology of Lozano and Wermelinger

L
an

g Type 1 Type 2 Type 3 NiCad-Combined CCFinderX-Combined
Systems ICC INC Rem ICC INC Rem ICC INC Rem ICC INC Rem ICC INC Rem

Ja
va

DNSJava 0.004306 0.001593 ⊖ 0.003644 0.002289 ⊖ 0.003378 0.002441 ⊖ 0.003330 0.002450 ⊖ 0.003093 0.002309 ⊖
Ant-Contrib 0.035714 0.014431 ⊖ 0.017205 0.014818 ⊖ 0.016187 0.015604 ◯ 0.015564 0.015398 ◯ 0.014623 0.014612 ◯
Carol 0.002214 0.001302 ⊖ 0.002166 0.001318 ⊖ 0.002670 0.001446 ⊖ 0.002528 0.001489 ⊖ 0.002269 0.001651 ⊖
jabref 0.003630 0.003038 ⊖ 0.003237 0.003097 ◯ 0.003648 0.003116 ⊖ 0.004282 0.003048 ⊖ 0.003453 0.002901 ⊖

C

Ctags 0.003461 0.002582 ⊖ 0.002533 0.002818 ⊕ 0.002510 0.002524 ◯ 0.002770 0.002547 ◯ 0.002832 0.002869 ◯
Camellia 0.014529 0.013044 ⊖ 0.013855 0.013020 ◯ 0.014032 0.013155 ◯ 0.013323 0.013170 ◯ 0.013722 0.012873 ◯
QMail Admin 0.037046 0.027128 ⊖ 0.120279 0.013481 ⊖ 0.031811 0.020772 ⊖ 0.030669 0.040555 ⊕ 0.011889 0.042659 ⊕
Gnumake
Uniproc

0.030799 0.027795 ⊖ 0.025762 0.025433 ◯ 0.061090 0.025809 ⊖ 0.062269 0.026350 ⊖ 0.026147 0.023723 ⊖

C
#

GreenShot 0.003980 0.003020 ⊖ 0.003310 0.003074 ◯ 0.003917 0.003133 ⊖ 0.003607 0.003220 ⊖ 0.003030 0.002906 ◯
ImgSeqScan 0 0.056784 ⊕ 0 0.051490 ⊕ 0 0.051490 ⊕ 0 0.051490 ⊕ 0.035525 0.067790 ⊕
Capital
Resource

0 0.011515 ⊕ 0 0.011515 ⊕ 0.012300 0.011517 ◯ 0.012300 0.011517 ◯ 0.011333 0.011554 ◯

MonoOSC 0.004739 0.007185 ⊕ 0.055743 0.007391 ⊖ 0.005750 0.007577 ⊕ 0.005366 0.007618 ⊕ 0.009784 0.007366 ⊖
ICC= Impact of Cloned Code INC= Impact of Non-Cloned Code Rem = Remark
⊕= ICC <INC (Category 1, CLONES MORE STABLE) ⊖= ICC >INC (Category 2, CLONES LESS STABLE)
◯= The decision point falls in Category 3

TABLE X: Likelihood of changes of cloned and non-cloned methods by the methodology of Lozano and Wermelinger

L
an

g Type 1 Type 2 Type 3 NiCad-Combined CCFinderX-Combined
Systems LCC LNC Rem LCC LNC Rem LCC LNC Rem LCC LNC Rem LCC LNC Rem

Ja
va

DNSJava 0.010465 0.006079 ⊖ 0.010300 0.004838 ⊖ 0.011197 0.006453 ⊖ 0.010594 0.006741 ⊖ 0.011812 0.005109 ⊖
Ant-Contrib 0.75 0.050016 ⊖ 0.053453 0.080826 ⊕ 0.168700 0.098941 ⊖ 0.152325 0.105432 ⊖ 0.064301 0.091879 ⊕
Carol 0.024513 0.007073 ⊖ 0.025205 0.007664 ⊖ 0.023643 0.009888 ⊖ 0.020661 0.010073 ⊖ 0.023418 0.011425 ⊖
jabref 0.012831 0.001861 ⊖ 0.014853 0.002014 ⊖ 0.009401 0.003026 ⊖ 0.008857 0.002179 ⊖ 0.004541 0.002599 ⊖

C

Ctags 0.065153 0.008283 ⊖ 0.024657 0.008239 ⊖ 0.069739 0.013531 ⊖ 0.033359 0.013643 ⊖ 0.010325 0.007249 ⊖
Camellia 0.023832 0.020232 ◯ 0.040466 0.019938 ⊖ 0.039178 0.019385 ⊖ 0.046392 0.019575 ⊖ 0.020016 0.035980 ⊕
QMail Admin 0.030872 0.022933 ⊖ 0.047893 0.018799 ⊖ 0.041239 0.021687 ⊖ 0.038644 0.016072 ⊖ 0.028739 0.018757 ⊖
Gnumake
Uniproc

0.256817 0.140758 ⊖ 0.040816 0.081776 ⊕ 0.094228 0.068551 ⊖ 0.100809 0.080028 ⊖ 0.073717 0.099099 ⊕

C
#

GreenShot 0.125183 0.014503 ⊖ 0.022490 0.016716 ⊖ 0.035680 0.016386 ⊖ 0.022600 0.017880 ⊖ 0.061601 0.010974 ⊖
ImgSeqScan 0 0.304426 ⊕ 0 0.279315 ⊕ 0 0.279315 ⊕ 0 0.279315 ⊕ 0.531635 0.231955 ⊖
Capital
Resource

0 0.032684 ⊕ 0 0.032684 ⊕ 0.012811 0.035023 ⊕ 0.012811 0.035023 ⊕ 0.058653 0.029643 ⊖

MonoOSC 0.061955 0.032516 ⊖ 0.119999 0.027509 ⊖ 0.018143 0.030559 ⊕ 0.032967 0.030469 ◯ 0.074932 0.030858 ⊖
LCC= Likelihood of Cloned Code LNC= Likelihood of Non-Cloned Code Rem = Remark
⊕= LCC <LNC (Category 1, CLONES MORE STABLE) ⊖= LCC >LNC (Category 2, CLONES LESS STABLE)
◯= The decision point falls in Category 3

NiCad-Combined CCFinderX-Combined
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 18: Overall analysis for impact.

We answer the fifth and sixth research questions (RQ 5 and
RQ 6) regarding impact and likelihood in the following eight
sections.

Overall analysis for impact: We draw the graph in Fig. 18
for our overall analysis. We see that the percentage of decision
points in Category 2 (CLONE LESS STABLE) is much higher
than that in Category 1 (CLONE MORE STABLE) in the
case of each clone detector. Such a scenario suggest that
cloned code has higher impact than non-cloned code in the

Java C C# Java C C#
0

20

40

60

80

100

NiCad-Combined CCFinderX-Combined

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 19: Language centric statistics for impact

maintenance phase. In other words, the average number of co-
changed methods for a change in a cloned method is higher
than the average number of co-changed methods for a change
in a non-cloned method.

Language centric analysis for impact: The language
centric analysis for this metric is shown in the graph of Fig.
19. We see that all of the significant points belonging to Java
programming language for each clone detector suggest that

Type 1 Type 2 Type 3
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 20: Type centric statistics for impact.

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3
0

20

40

60

80

100

Java C C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 21: Language-wise type centric statistics for impact

cloned code has higher impact than non-cloned code (Category
2, CLONES LESS STABLE). However, in case of C#, higher
proportion of significant decision points suggest lower impact
of cloned code (Category 1, CLONES MORE STABLE)
according to NiCad results. For C, the same proportion (25%)
of decision points belong to both Category 1 and Category
2 for each clone detector. According to this metric, clones in
Java programming language show higher instability compared
to non-cloned code in the maintenance phase.

Type centric analysis for impact: According to the type
centric analysis regarding impact (Fig. 20), for each of the
three clone types, the impact of changing cloned methods
is generally higher than the impact of changing non-cloned
methods. In other words, according to this metric (impact),
each type of clones is more unstable compared to the non-
cloned code.

Type Centric Analysis for Each Language Regarding
Impact: According to the type centric statistics shown in the
graph of Fig. 21, all of the three clone types of Java are
suggested to be highly unstable in the maintenance phase. The
same is true for the Type 1 and Type 3 clones of C. In case
of C#, each of the three types of clones exhibits lower impact
than non-cloned code during maintenance phase.

Answer to RQ 5: According to our analysis on the
combined-type clone results, the impact of changing a
cloned method (i.e., the number of other methods that
get changed as a result of changing a cloned method)
is generally higher compared to the impact of changing
a non-cloned method. The original study [37] was per-
formed using CCFinderX clone detection results (i.e., the

NiCad-Combined CCFinderX-Combined
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 22: Overall analysis for likelihood.

Java C C# Java C C#
0

20

40

60

80

100

NiCad-Combined CCFinderX-Combined

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 23: Language centric statistics for likelihood

combined type clone results of CCFinderX. CCFinderX
cannot separate the clone detection results by clone-
types). Our finding from overall analysis complies with
the finding of the original study. We also performed
language centric and type centric analysis. These analyses
were not done in the original study.

According to our clone-type centric analysis, cloned
methods containing each of the three types of clones
have a higher impact than non-cloned methods. Our
language centric analysis in Fig. 21 demonstrates that
cloned methods in both Java and C exhibit higher impact
than non-cloned methods.

Overall analysis for likelihood: We draw the graph in
Fig. 22 for our overall analysis. We see that the percentage
of decision points in Category 2 (CLONE LESS STABLE)
is much higher than that of Category 1 (CLONE MORE

Type 1 Type 2 Type 3
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 24: Type centric statistics for likelihood.

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3
0

20

40

60

80

100

Java C C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 25: Language-wise type centric statistics for likelihood

STABLE) for each clone detector. Such a scenario suggests
that cloned code is more likely to be changed than the non-
cloned code in the maintenance phase.

Language centric analysis for likelihood: According to
the language centric statistics (Fig. 23) for both NiCad and
CCFinderX results, code clones in Java systems have a very
high likelihood of getting changed during evolution compared
to non-cloned code. Code clones in C systems also have a
high tendency of being more unstable than non-cloned code. In
case of C#, while CCFinderX suggests a very high tendency of
change-proneness of cloned code, NiCad suggests the opposite.
We have mentioned that the combined-type clone results of
NiCad are different than those of CCFinderX. NiCad results
contain Type 3 clones. However, CCFinderX cannot detect
Type 3 clones. Possibly, this difference is the primary reason
of the different scenarios in case of C#.

Type centric analysis for likelihood According to the type
centric statistics exhibited by the graph in Fig. 24, for each of
the three clone types, cloned code is more likely to get modified
compared to non-cloned code.

Type Centric Analysis for Each Language Regarding
Likelihood: The language-wise type centric statistics of the
graph in Fig. 25 strongly suggests that each of the three clone-
types of Java and C are highly unstable in the maintenance
phase because they exhibit much higher likelihood of changes
compared to non-cloned code. Also, 50% of the points belong-
ing to both Type 1 and Type 2 case of C# suggest cloned code
to be more unstable. However, Type 3 clones of this language
(C#) are more stable than non-cloned code.

Answer to RQ 6: According to our overall analysis,
cloned methods are generally more likely to change than
non-cloned methods. Such a finding complies with the
finding of the original study performed by Lozano and
Wermelinger [37].

The original study [37] does not contain any clone-
type centric or language centric analysis of clone stability.
We perform such analysis in our study. According to our
analysis, cloned methods containing any of the three types
of clones in Java and C systems, exhibit a higher change-
proneness than non-cloned methods. According to Fig. 25,
cloned methods in C# systems seem to be less change-
prone than non-cloned methods in these systems.

F. Analysis of the Experimental Results Regarding Average
Instability per Cloned Method

We calculated EPCM and CPCM according to the
equations Eq. 18 and 19 using our implementation of Lozano
and Wermelinger’s study [36]. However, the values of EPCM
and CPCM that we get using these equations are percentages.
We normalize these values within zero to one by dividing them
by 100.

These two metrics (EPCM and CPCM) together can
help us to take decision about the instabilities of cloned
methods due to cloned and non-cloned code (Cloned methods
might also contain non-cloned portions). The combined type
and individual type results (normalized between zero to one)
for these two metrics are presented in Table XI respectively.
Our decision making procedure using these two metrics is
explained below.

We have already mentioned that EPCM is the average
proportion of cloning in the cloned methods. Also, CPCM
is the average proportion of changes to the clones in the
cloned methods. We take stability decisions comparing these
two proportions in the following way.

(1) For a particular decision point, if the difference between
EPCM and CPCM is not significant (the eligibility value
calculated by Eq. 23 is less than the threshold value), then
we can say that for this point cloned code is getting about
that proportion of changes which it should get considering
its proportion in the method. This is the ideal case (indicated
by ◯ in Table XI) which does not indicate any positive or
negative impact of cloned code. Such a point falls in Category
3 (NEUTRAL).

(2) If CPCM>EPCM with an eligibility value greater
than or equal to the threshold value, we understand that cloned
portions of the cloned methods are getting more changes than
they would get in the ideal situation. In other words, the
instability of cloned methods due to cloned portions is higher
than the instability of the cloned methods due to non-cloned
portions. Such decision points (marked with ⊖) belong to
Category 2 (CLONES LESS STABLE).

(3) The decision points (indicated by ⊕) where
CPCM<EPCM with an eligibility value greater than or
equal to the threshold value belong to Category 1 (CLONES
MORE STABLE).

We use Eq.23 to calculate the eligibility value.

EligibilityV alue = (HV al −LV al) ∗ 100
LV al

(23)

Here, HVal stands for Higher value between EPCM and
CPCM where LVal is elaborated as Lower value between
these two. An eligibility value of at least 10 is treated as
a significant one as was done for some previous cases. In
the following four sections we answer the seventh research
question RQ 7.

Overall analysis: We draw the graph in Fig. 26 for overall
analysis. We see that each clone detector suggests a much
higher stability of cloned code compared non-cloned code.
In case of the clone detection results of each clone detector

TABLE XI: Average Instability per Cloned Method by Lozano and Wermelinger’s methodology
L

an
g Type 1 Type 2 Type 3 NiCad-Combined CCFinderX-Combined

Systems CPCM EPCM Rem CPCM EPCM Rem CPCM EPCM Rem CPCM EPCM Rem CPCM EPCM Rem

Ja
va

DNSJava 0.8547 0.7639 ⊖ 0.4187 0.5721 ⊕ 0.3829 0.5102 ⊕ 0.3473 0.4967 ⊕ 0.1939 0.2748 ⊕
Ant-Contrib 0.3888 0.3967 ◯ 0.2307 0.3913 ⊕ 0.1666 0.5484 ⊕ 0.2236 0.5346 ⊕ 0.0769 0.3355 ⊕
Carol 0.3895 0.5778 ⊕ 0.5181 0.7023 ⊕ 0.6431 0.6340 ◯ 0.6383 0.6725 ◯ 0.2216 0.3258 ⊕
jabref 0.1177 0.5142 ⊕ 0.1413 0.4164 ⊕ 0.1983 0.4734 ⊕ 0.2123 0.4322 ⊕ 0.1034 0.2178 ⊕

C

Ctags 0.1875 0.2887 ⊕ 0.2965 0.3147 ◯ 0.2347 0.3235 ⊕ 0.2704 0.3519 ⊕ 0.2021 0.3230 ⊕
Camellia 0.0152 0.0812 ⊕ 0.0745 0.0852 ⊕ 0.1588 0.3668 ⊕ 0.1606 0.3422 ⊕ 0.1562 0.1695 ◯
QMail Admin 0.1234 0.128 ◯ 0.0890 0.0755 ⊖ 0.1844 0.1674 ⊖ 0.1820 0.1620 ⊖ 0.11 0.1057 ◯
Gnumake
Uniproc

0.4044 0.7947 ⊕ 0 0.0444 ⊕ 0.0145 0.2918 ⊕ 0.10 0.6739 ⊕ 0.1935 0.1904 ◯

C
#

GreenShot 0.5172 0.8223 ⊖ 0.4418 0.9004 ⊕ 0.4795 0.8407 ⊕ 0.5254 0.5851 ⊕ 0.1932 0.8054 ⊕
ImgSeqScan 0 0.4705 ⊕ 0 0.8082 ⊕ 0 0.4876 ⊕ 0 0.6591 ⊕ 0.0667 0.1866 ⊕
Capital
Resource

0 0.8940 ⊕ 0 0.7332 ⊕ 0.80 0.4348 ⊖ 0.80 0.4635 ⊖ 0.3225 0.3091 ◯

MonoOSC 0.3333 0.2751 ⊖ 0.60 0.8502 ⊕ 0.90 0.9352 ◯ 0.8101 0.8578 ◯ 0.2274 0.3253 ⊕
CPCM= Average percentage of changes taking place to the cloned portions of cloned methods.
EPCM= Average percentage of cloning per method. R = Remark
⊕= CPCM <EPCM (Category 1, CLONES MORE STABLE) ⊖= CPCM >EPCM (Category 2, CLONES LESS STABLE)
◯= The decision point falls in Category 3

NiCad-Combined CCFinderX-Combined
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 26: Overall analysis for average instabilities of cloned
methods.

Java C C# Java C C#
0

20

40

60

80

100

NiCad-Combined CCFinderX-Combined

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 27: Language centric statistics for average instabilities of
cloned methods

(NiCad and CCFinderX), around 66.67% of the decision points
belong to Category 1 (CLONE MORE STABLE).

Language centric analysis: The language centric analysis
presented in the graph of Fig. 27 constructed from Table
XI suggests that for each of the programming languages
considering each clone detector, cloned code introduces less
instability to a software system than the instability introduced
by non-cloned code.

Type centric analysis: According to the type centric
statistics in the graph of Fig. 28, the instability of the cloned

Type 1 Type 2 Type 3
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 28: Type centric statistics for average instabilities of
cloned methods.

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3
0

20

40

60

80

100

Java C C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 29: Language-wise type centric statistics for average
instabilities of cloned methods

methods due to each clone-type is less than the instability of
the cloned methods due to non-cloned code.

Type Centric Analysis for Each Language: Also, in
case of type centric statistics for each candidate programming
language (Fig. 29 constructed from Table XI) we see that no
clone types are notably unstable for the maintenance phase
compared to non-cloned code. Thus, this analysis agrees with
the previous analyses regarding this metric.

NiCad-Combined CCFinderX-Combined
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 30: Overall analysis for change dispersion.

Answer to RQ 7: According to our analysis on aver-
age instability per cloned method, we see that code clones
are more stable than non-cloned code. However, this
metric considers the changes in the clone and non-clone
portions of the cloned methods. It ignores the changes in
the fully non-cloned methods. Possibly, this is the reason
why our finding regarding this metric contradicts with our
findings regarding the metrics: modification probability,
impact, and likelihood. Our finding regarding average
instability per cloned method also contradicts with the
finding from the original study [36] performed by Lozano
and Wermelinger. They used CCFinderX in their study for
detecting code clones. We also use CCFinderX with the
same settings. However, their study was performed only
on five systems written in Java. We perform our study on
12 subject systems covering three programming languages
(Java, C, and C#). They considered only Type 1 and Type
2 clones in their study. We consider all three types of
clones (Type 1, Type 2, and Type 3) in our study. Possibly,
these are the reasons behind the contradiction.

G. Analysis of the Experimental Results Regarding Change
Dispersion

Using our proposed methodology [42], we calculated the
change dispersions in cloned (CDc) and non-cloned code
(CDn) according to the equations: Eq. 20 and Eq. 21 respec-
tively. However, these equations provide us percentages. We
normalized these values within zero to one by dividing them
by 100. The normalized dispersions are shown in Table XII. In
the following four paragraphs we answer the eighth research
question RQ 8 regarding change dispersion.

Overall analysis: According to our overall analysis
demonstrated in Fig. 30, each of the two clone detectors
(NiCad and CCFinderX) suggests a higher dispersion of
changes in cloned code than in non-cloned code for most
of the decision points. Regarding NiCad-Combined results we
see that 66.67% of the decision points belong to Category 2
(CLONE LESS STABLE). This percentage for CCFinderX-
Combined results is 83.33%. Thus, changes in the cloned por-
tions of a subject system are more scattered than the changes
in the non-cloned portions. In other words, the proportion of
methods affected by the changes in cloned code is generally
greater than the proportion of methods affected by the changes
in the non-cloned code.

Java C C# Java C C#
0

20

40

60

80

100

NiCad-Combined CCFinderX-Combined

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 31: Language centric statistics for change dispersion

Type 1 Type 2 Type 3
0

20

40

60

80

100

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 32: Type centric statistics for change dispersion.

Language centric analysis: From the graph in Fig. 31
we see that each clone detector suggests a higher dispersion
of changes in cloned code than in non-cloned code for each
language except C# under NiCad-Combined case. From such
a scenario we can decide that dispersion of changes in code
clones is generally higher compared to the dispersion of
changes in non-cloned code.

Type centric analysis: According to the type centric
statistics shown in the graph of Fig. 32 (constructed from Table
XII), Type 3 clones are more likely to get highly dispersed
changes compared to the other two types (Type 1, Type 2) of
clones. While Type 3 clones appear to be more unstable than
non-cloned code, the other two types appear to be more stable.

Type Centric Analysis for Each Language: According
to the language-wise type centric statistics shown in graph of
Fig. 33 we see that Type 3 clones in Java and both of the

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3
0

20

40

60

80

100

Java C C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 33: Language-wise type centric statistics for change
dispersion

TABLE XII: Change Dispersion (CD) in Cloned and Non-cloned Methods

L
an

g Type 1 Type 2 Type 3 NiCad-Combined CCFinderX-Combined
Systems CDc CDn Rem CDc CDn Rem CDc CDn Rem CDc CDn Rem CDc CDn Rem

Ja
va

DNSJava 0.2453 0.0591 ⊖ 0.1517 0.0782 ⊖ 0.1816 0.0755 ⊖ 0.17 0.06 ⊖ 0.18 0.07 ⊖
Ant-Contrib 0.1764 0.0163 ⊖ 0.0222 0.0195 ⊖ 0.05 0.0197 ⊖ 0.0526 0.0176 ⊖ 0.05 0 ⊖
Carol 0.0587 0.1950 ⊕ 0.0935 0.1933 ⊕ 0.1892 0.1972 ◯ 0.2056 0.0912 ⊖ 0.23 0.07 ⊖
jabref 0.1123 0.2043 ⊕ 0.0895 0.2178 ⊕ 0.1305 0.1844 ⊕ 0.1234 0.1985 ⊕ 0.31 0.08 ⊖

C

Ctags 0 0.1004 ⊕ 0.20 0.0966 ⊖ 0.1453 0.0978 ⊖ 0.13 0.09 ⊖ 0.21 0.10 ⊖
Camellia 0 0.0985 ⊕ 0.125 0.0955 ⊖ 0.35 0.0876 ⊖ 0.31 0.08 ⊖ 0.30 0.09 ⊖
QMail Admin 0.50 0.0729 ⊖ 0.4285 0.0803 ⊖ 0.60 0.0815 ⊖ 0.53 0.07 ⊖ 0.50 0.12 ⊖
Gnumakeuniproc 0.125 0.0042 ⊖ 0 0.0050 ⊕ 0.0138 0.0051 ⊖ 0.04 0.06 ⊕ 0.0126 0.0273 ⊕

C
#

GreenShot 0.0888 0.2932 ⊕ 0.2296 0.2949 ⊕ 0.3037 0.3047 ◯ 0.1088 0.0388 ⊖ 0.14 0.05 ⊖
ImgSeqScan 0.0 0.0376 ⊕ 0.0 0.0373 ⊕ 0.0 0.0372 ⊕ 0.0 0.0372 ⊕ 0.25 0.0055 ⊖
Capital Resource 0.0 0.0492 ⊕ 0.0 0.0479 ⊕ 0.0395 0.0447 ⊕ 0.0395 0.0447 ⊕ 0.0395 0.0458 ⊕
MonoOSC 0.0317 0.1048 ⊕ 0.0526 0.1042 ⊕ 0.3913 0.1003 ⊖ 0.34 0.10 ⊖ 0.3944 0.12 ⊖

CDc= Change Dispersion in Cloned Code. CDn= Change Dispersion in Non-cloned Code. Rem = Remark
⊕= CDc <CDn (Category 1, CLONES MORE STABLE) ⊖= CDc >CDn (Category 2, CLONES LESS STABLE)
◯= The decision point falls in Category 3

Type 2 and Type 3 clones in C appear to be more unstable
than non-cloned code during software maintenance. However,
each of the three clone-types of C# seems to be more stable
compared to non-cloned code.

Answer to RQ 8: According to our overall analysis
considering the combined-type results, changes in code
clones are generally more dispersed (i.e., scattered) com-
pared to the changes in non-cloned code. Such a finding
complies with the finding from the original study [42].

We also performed language centric and type cen-
tric analysis for change dispersion. Our language centric
analysis (Fig. 33) demonstrates that code clones in Java
and C systems have higher likeliness of getting more
dispersed changes than non-cloned code in these systems.
The opposite is true for the code clones in C# systems.
According to our type centric analysis, Type 3 clones
have a higher possibility of experiencing more dispersed
changes than non-cloned code compared to the other two
clone-types (Type 1 and Type 2).

H. Replication of the Original Studies

We have replicated the original studies using our uniform
framework. For the purpose of replication we used the same
clone detection tools and subject systems as of the original
studies. The purpose of replication was to determine whether
our implemented uniform framework produces experimental
results that are equivalent to the results of the original studies.
If the results are equivalent, then we realize that we can
reasonably depend on our uniform framework for investigating
clone stability. In the following paragraphs we describe the
findings of our replicated experiments with original setup.

Replication of the study of Hotta et al.: We replicated
the original study of Hotta et al. [24] using Simian [59] clone
detection tool. We used the default configurations for Simian
as in the original study. This setting considers six lines of
code as minimum clone size. We measured the modification
frequencies of cloned (MFc) and non-cloned (MFn) code for
the same subject systems used in the original study. Table
XIII shows the modification frequencies of cloned and non-
cloned code for the systems considering all types of clones. For

TABLE XIII: Modification Frequencies by Hotta et al.’s
Methodology with Original Setup

Simian-Combined
Systems MFc MFn Remark #Revisions

Ja
va

Adserverbeans 32.0335 60.0428 ⊕ 125
DatabaseToUML 2.9124 11.8236 ⊕ 60
EclEmma 15.7983 28.8905 ⊕ 1736
Freecol 6.1282 14.6388 ⊕ 6000
OpenYmsg 27.4103 16.8265 ⊖ 304
Squirrel 9.8247 19.3574 ⊕ 6737
Threecam 4.0774 10.7737 ⊕ 14

C
++

FileZilla 10.7072 12.2153 ⊕ 7634
Gamescanner 23.6345 22.3518 ⊖ 457
Tritonn 77.8368 113.9316 ⊕ 100
Winmerge 5.1693 12.7347 ⊕ 7618

C QMail Admin 66.4018 73.376 ⊕ 317
MFc= Modification Frequency of Cloned Code
MFn= Modification Frequency of Non-Cloned Code
⊕= MFc <MFn (Category 1, CLONES MORE STABLE)
⊖= MFc >MFn (Category 2, CLONES LESS STABLE)

all the subject systems except Gamescanner and QmailAdmin
our findings agree with the overall conclusion of Hotta et al.
that modification frequencies for cloned code are less than
the modification frequencies of non-cloned code. These imply
that cloned code is more stable than non-cloned code. Due to
some small variations in the experimental settings such as the
number of revisions analyzed, the values of the metrics are
not comparable by absolute values. However, our conclusions
for subject systems regarding the modification frequencies of
cloned and non-cloned code agree with the findings of the
original study in most cases.

The original study of Hotta et al. used clone detection
tools CCFinder, CCFinderX, Simian and Scorpio [64]. For
evaluation of our implementation in original settings, we opted
for clone detection tools Simian and Scorpio as those tools
were not used in our studies reported in Section VII-A. From
our investigation on clone detection results from Scorpio we
observed that Scorpio detects partially-overlapped and fully-
overlapped code blocks as clones unlike all other tools we used
in our study. However, our implementation do not consider
overlapped clones and we do not have information on how it
was handled in Hotta et al.’s original study.

Our finding from the replication of the study
of Hotta et al.: According to our replication study,
cloned code generally appears to be more stable (i.e., less
frequently modified) than non-cloned code. Such a finding
agrees with the finding from the original study.

TABLE XIV: Modification Probability by Göde et al.’s
Methodology with Original Setup

iClones-Combined
Systems MPc MPn Remark #Revisions

Ja
va ArgoUML 0.000166443 0.000153663 ⊖ 15000

Squirrel 0.000093629 0.000095191 ⊕ 6737
MPc= Modification Probability of Cloned Code
MPn= Modification Probability of Non-Cloned Code
⊕= MPc <MPn (Category 1, CLONES MORE STABLE)
⊖= MPc >MPn (Category 2, CLONES LESS STABLE)

Replication of the study of Göde and Harder : We
replicated the study by Göde and Harder [19] with the
same subject systems and the clone detection tool iClones [63]
used in the original study. We used the default configuration
settings for iClones to detect clones of all Types (Type 1,
Type 2 and Type 3) for a minimum size of 100 tokens. We
measure modification probabilities for cloned (MPc) and non-
cloned (MPn) code for the subject systems ArgoUML and
Squirrel used in the original study. Our results in Table XIV
show that for Squirrel the modification probability of cloned
code is lower than the modification probability of non-cloned
code. This implies that cloned code is more stable than non-
cloned code which agrees with the original findings by Göde
and Harder. However, for ArgoUML the modification proba-
bility of cloned code is slightly higher than the modification
probability of non-cloned code. This finding for ArgoUML
differs from the original study. We have used the most updated
version of iClones available which is different from the version
used in the original study. Any difference in clone detection
results may have significant impact on the stability analysis as
mentioned by different existing studies [24], [36], [37].

Finding from our replication of the study of Göde
and Harder : While the original study conducted by Göde
and Harder reports that cloned code is more stable (i.e.,
cloned code has less modification probability) than non-
cloned code, our replication study result partially agrees
with this finding. The original study investigated two
subject systems and both of these systems indicated higher
stability of cloned code. However, in our replication study,
one of these two systems indicate higher instability of
cloned code compared to non-cloned code.

Replication of the study of Krinke: To evaluate metric
for our implementation of Krinke’s [33] methodology we
analyzed the same subject systems and used the text-based
clone detection tool Simian as in the original study. We used
the default settings for Simian with minimum clone size of
6 lines. For ArgoUML we analyzed revision 19915 (18995
in original study) and for JEdit we analyzed revision 24443
(19285 in original study). Krinke’s methodology applies SVN

TABLE XV: Average Last Change Dates by Krinke’s method-
ology with original setup

Simian-Combined
Systems ALCDc ALCDn Remark Revision

Ja
va ArgoUML 5-JUL-2007 1-APR-2007 ⊖ 19915

JEdit 21-JUL-2006 3-JUN-2006 ⊖ 24443
ALCDc= Average Last Change Date of Cloned Code
ALCDn= Average Last Change Date of Non-Cloned Code
⊕= ALCDc is older than ALCDn (Category 1, CLONES MORE STABLE)
⊖= ALCDc is newer than ALCDn (Category 2, CLONES LESS STABLE)

blame command on the last revision of a system to retrive
the last change dates for source code lines. Thus we have
analyzed updated revisions than the revisions used in the
original studies. Our experimental results for ArgoUML and
JEdit are shown in Table XV. Our results show that for
ArgoUML the average last change date (ALCDc) for cloned
code (5-JUL-2007) is newer than the average last change date
(1-APR-2007) for non-cloned code (ALCDn). This implies
that clones are younger than non-clone code. This finding agree
with the original study. However, for JEdit the average last
change date for cloned code (21-JUL-2006) is newer than the
average last change date (3-JUN-2006) for non-cloned code.
This finding do not agree with the conclusion of the original
study by Krinke. For JEdit we analyzed a considerable number
of more revisions which might have introduced differences in
our findings for JEdit.

Finding from our replication of the study of
Krinke: According to our replication study, cloned code
appears to exhibit a higher instability than non-cloned
code. However, such a finding disagrees with the finding
from the original study of Krinke.

TABLE XVI: Impact of cloned and non-cloned code by the
methodology of Lozano and Wermelinger with original setup

CCFinderX-Combined
Systems ICC INC Remark #Revisions

Ja
va

Freecol 0.002602425 0.002317386 ⊖ 6000
Ganttproject 0.010625655 0.009936604 ⊖ 2629
JBoss 0.005176758 0.004745167 ⊖ 3000

ICC= Impact of Cloned Code
INC= Impact of Non-Cloned Code
⊕= ICC <INC (Category 1, CLONES MORE STABLE)
⊖= ICC >INC (Category 2, CLONES LESS STABLE)

TABLE XVII: Likelihood of changes of cloned and non-cloned
methods by the methodology of Lozano and Wermelinger with
original setup

CCFinderX-Combined
Systems LCC LNC Remark #Revisions

Ja
va

Freecol 0.007500568 0.002713309 ⊖ 6000
Ganttproject 0.00421473 0.002518339 ⊖ 2629
JBoss 0.008984112 0.004929813 ⊖ 3000

LCC= Likelihood of Cloned Code
LNC= Likelihood of Non-Cloned Code
⊕= LCC <LNC (Category 1, CLONES MORE STABLE)
⊖= LCC >LNC (Category 2, CLONES LESS STABLE)

Replication of the study of Lozano and Wermelinger

for likelihood and impact: We evaluated the metrics for our
implementation of the study by Lozano and Wermelinger
[37] using subject systems and the same clone detection tool
(CCFinderX) used in the original study. Table XVI shows the
impact of cloned and non-cloned code for three subject systems
used in the original study. Our results show that for all three
subject systems the impact of cloned code (ICC) is greater
than the value of the impacts of non-cloned code (INC). This
suggests that clones are less stable than non-cloned code which
agrees with the original study by Lozano and Wermelinger.
Again, Table XVII shows the likelihood of the cloned and non-
cloned code. The results show that for all three subject systems,
the likelihood of the cloned code ((LCC)) is greater than the
likelihood of the non-cloned code ((LNC)). This implies that
clones are less stable than non-cloned code which agrees with
the original study.

Finding from the replication of the study of Lozano
and Wermelinger regarding likelihood and impact:
Our replication study implies that cloned code is more
unstable than non-cloned code. This finding agrees with
the finding from the original study.

TABLE XVIII: Average Instability per Cloned Method by
Lozano and Wermelinger’s methodology with original setup

CCFinderX-Combined
Systems CPCM EPCM Remark #Revisions

Ja
va

Columba 0.279847182 0.3068405177 ⊕ 465
Freecol 0.114571869 0.210005715 ⊕ 6000
Ganttproject 0.157217456 0.222673575 ⊕ 2629
JBoss 0.201973389 0.278213410 ⊕ 3000

CPCM= Average percentage of changes taking place to the cloned portions
of cloned methods

EPCM= Average percentage of cloning per method
⊕= CPCM <EPCM (Category 1, CLONES MORE STABLE)
⊖= CPCM >EPCM (Category 2, CLONES LESS STABLE)

Replication of the study of Lozano and Wermelinger
for stability and extension: To evaluate the metrics for our
implementation of the study by Lozano and Wermelinger [36]
we used same subject systems and the clone detection tool
CCFinderX with same parameter settings. Our experimental
results for four Java subject systems used in the original study
are shown in Table XVIII. Our results show that the average
percentage of changes taking place to the cloned portions
of the cloned method (CPCM) is smaller than the average
percentage of cloning per method (EPCM). These results for
all four subject systems suggest that clones are more stable.
This findings do not agree with the findings from the original
study.

These differences in results might be due to the differences
in experimental setup. The original study neither clearly spec-
ifies the number of revisions considered nor the configuration
of the clone detection tools. However, we used the default
configuration for the clone tool CCFinderX and the same
number of revisions of the systems we used for the other study
of Lozano and Wermelinger [37] . In most cases we have
analyzed higher number of revisions than we perceive from
the result representation in the original study. This includes the
analysis of source code of comparatively more mature stage

M
F

M
P

A
L

C
D

A
A

Im
pa

ct

L
ik

el
ih

oo
d

A
IC

M C
D

M
F

M
P

A
L

C
D

A
A

Im
pa

ct

L
ik

el
ih

oo
d

A
IC

M C
D

0

20

40

60

80

100

NiCad-Combined CCFinderX-Combined

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

MF = Modification Frequency MP = Modification Probability
ALCD = Average Last Change Date AA = Average Age
AICM = Average Instability per Cloned Method CD = Change Dispersion

Fig. 34: Proportions of decision points for 8 metrics consider-
ing combined type results of each clone detector

of evolution. Again, the original study shows that clones are
comparatively less stable at the earlier revisions and clones
tend to be more stable over time. Inclusion of more revisions
thus might have contributed to our findings to be different from
the original study.

From our replication of studies with original setups we
observe that our results are mostly equivalent to the results
of the original studies. Our results differ in few cases from
the original findings. As the subject systems and tools used in
the original studies are continuously evolving, it is possibly
impractical to expect absolutely exact results to reproduce.
However, the equivalent results in most cases imply that our
uniform framework reliably integrates the existing methodolo-
gies for stability analysis of code clones.

Finding from the replication of the study of Lozano
and Wermelinger regarding stability and extension:
Our replicated study disagrees with the finding from the
original study and indicates that cloned code is more
stable than non-cloned code.

VIII. CUMULATIVE STATISTICS AND ANALYSIS OF
METRICS

So far we have presented our four-dimensional analysis
for the results obtained for individual metrics. This section
presents our analysis of experimental results from different
perspectives by aggregating all the eight metrics (of seven
methodologies).

A. Overall analysis

We performed our overall analysis in the following way
considering the combined type results. We draw a graph in Fig.
34 that accumulates all overall statistics of all the eight metrics
considering NiCad-Combined and CCFinderX-Combined
results.

Analyzing the NiCad-Combined results: Let us consider
the bars corresponding to NiCad-Combined results in Fig. 34.
We see that according to four metrics: (i) MP (modification
probability), (ii) Impact (impact of cloned or non-cloned code),
(iii) Likelihood (likelihood of changes in cloned or non-cloned
code), and (iv) CD (change dispersion) cloned code appears to
exhibit higher instability compared to non-cloned code. In each
of these cases, the percentage of decision points in Category
2 (CLONE LESS STABLE) is higher than the percentage in
Category 1 (CLONE MORE STABLE). In the cases of the
metrics: ALCD (average last change date) and AA (average
age), 50% of the decision points belong to both Category 1
and Category 2. The remaining two metrics: MF (modification
frequency) and AICM (average instability of cloned methods)
suggest higher stability of cloned code compared to non-cloned
code. We finally see that according to the combined-type
results of NiCad clone detector, majority of the metrics suggest
higher instability of cloned code than non-cloned code.

Wilcoxon Signed Rank Tests for NiCad-Combined
results: We perform Wilcoxon Signed Rank (WSR) Tests
[3], [4] considering the combined type results of NiCad to
determine whether there is a statistically significant difference
between the metric values of cloned and non-cloned code. In
a table that contains the decision points for a particular metric
(e.g., Table V), we get 12 decision points from 12 subject
systems under the heading NiCad-Combined. From these 12
decision points we obtain 12 metric values for cloned code
and 12 corresponding values for non-cloned code. The metric
values for cloned and non-cloned code are paired. We apply
Wilcoxon Signed Rank Test [3], [4] on these 12 paird samples
to determine whether the 12 metric values for cloned code are
significantly different than the 12 metric values for non-cloned
code. Table XIX shows the test results for seven metrics (i.e.,
excluding average last change date). We exclude average last
change date from consideration, because this metric provides
dates. We cannot apply Wilcoxon Signed Rank Tests on dates.
However, we mentioned that the average age metric is a variant
of the average last change date metric. As we perform tests for
average age, we believe that exclusion of average last change
date from consideration will not affect our findings. We should
note that the WSR test is non-parametric, and thus, it does not
require the samples to be normally distributed [3]. We perform
our tests considering a significance level of 5%.

In Table XIX under NiCad-Combined heading, the p-
value (Probability value) regarding modification frequency
(MF) is 0.27134. As the p-value is greater than 0.05, the
12 modification frequencies of cloned code from 12 subject
systems are not significantly different than the corresponding
modification frequencies of non-cloned code. We see that p-
value is greater than 0.05 for most of the cases under NiCad-
Combined heading. In the case of change dispersion, the p-
value is 0.05. As the p-value is not smaller than 0.05, test
result is not significant in this case too. We see that only in
the case of AICM (average instability per cloned method), the

TABLE XIX: Wilcoxon Signed-Rank tests for the metrics

NiCad-Combined CCFinderX-Combined
MF p = 0.27134 p = 0.58232

MP p = 0.63836 p = 0.4354
AA p = 0.93624 p = 0.87288
Impact p = 0.5287 p = 0.4354
Likelihood p = 0.13622 p = 0.15854
AICM p = 0.0278, r = 0.4483 p = 0.01208, r = 0.5124
CD p = 0.05 p = 0.0048, r = 0.5764
MF = Modification Frequency MP = Modification Probability
ALCD = Average Last Change Date AA = Average Age
AICM = Average Instability per Cloned Method
CD = Change Dispersion p = Probability r = Effect Size

p-value (0.0278) is less than 0.05. However, the effect size (r
= 0.4483) is not large (i.e., r < 0.5) [6]. Moreover, the AICM
metric disregards the changes occurred in the fully non-cloned
methods. Thus, we cannot rely only on this metric to compare
the stability of cloned and non-cloned code. Finally, statistical
significance tests on the combined type results of NiCad cannot
help us determine whether there is any significant difference
between the stabilities of cloned and non-cloned code.

Analyzing the CCFinderX-Combined results: We now
consider the overall statistics (Fig. 34) corresponding to the
combined-type results of CCFinderX. Interestingly, the same
four metrics (as we obtained by analyzing NiCad-Combined
results): (i) MP (modification probability), (ii) Impact (impact
of cloned or non-cloned code), (iii) Likelihood (likelihood of
changes in cloned or non-cloned code), and (iv) CD (change
dispersion) suggest higher instability of code clones compared
to non-cloned code. According to two metrics: AA (Average
age), and AICM (Average instability of cloned methods)
cloned code appears to be more stable. For the remaining
two metrics, MF (modification frequency) and ALCD (average
last change date), 50% of the decision points belong to both
Category 1 and Category 2. We again see that majority of the
metrics suggest higher instability of cloned code than non-
cloned code.

We should note that the combined-type results of NiCad
and CCFinderX clone detector are not equivalent. While NiCad
results contain Type 3 clones, CCFinderX does not detect
Type 3 clones. Moreover, the underlying detection techniques
of these two clone detectors are different. NiCad is a text
similarity based clone detector. CCFinderX detects clones
on the basis of token similarity. However, even with these
differences in detection techniques and detection results, the
overall scenarios of the comparative stability of cloned and
non-cloned code implied by these two clone detectors are
similar. The same four metrics indicate higher instability of
cloned code according to each clone detector.

Let us consider the first metric, modification probability
(MP), of the four metrics that indicate higher instability of code
clones. According to the implication of this metric mentioned
in Table I, the proportion of tokens that get affected in
the clone regions per commit operation is generally higher
compared to the proportion of affected tokens in the non-
clone regions. According to the second metric, impact, we
realize that changes in a cloned method generally have a higher

TABLE XX: Comparison Between Original Findings and Our
Findings Regarding the Candidate Metrics

Investigated Metric Original
Findings

Our
Findings
using
NiCad

Our
Findings
using
CCFind-
erX

Modification Frequency (MF) (Hotta et
al. [24])

⊕ ⊕ ◯

Modification Probability (MP) (Göde
and Harder [19])

⊕ ⊖ ⊖

Average Last Change Date (ALCD)
(Krinke [33])

⊕ ◯ ◯

Impact (Lozano and Wermelinger [37]) ⊖ ⊖ ⊖
Likelihood (Lozano and Wermelinger
[37])

⊖ ⊖ ⊖

Average Instability of Cloned Methods
(AICM) (Lozano and Wermelinger [36])

⊖ ⊕ ⊕

Average Age (AA) (Mondal et al. [41]) ⊖ ◯ ⊕
Change Dispersion (CD) (Mondal et al.
[42])

⊖ ⊖ ⊖

⊕ = Instability of cloned code is less than that of non-cloned code
⊖ = Instability of cloned code is higher than that of non-cloned code
◯ = Instabilities of cloned and non-cloned code are the same

impact (i.e., higher number of other methods gets affected as
a result) compared to the changes in a non-clone method. The
third metric, likelihood, indicates that cloned methods exhibit
higher likeliness of getting changed compared to the non-
cloned methods during evolution. According to the implication
of the fourth metric, change dispersion (CD), changes in the
clone regions of a code-base are generally more scattered
compared to the changes in the non-clone regions. From our
discussions we realize that:

● Code clones generally have a higher likeliness of
getting changed during evolution compared to non-
cloned code.

● Impact of changing code clones is generally higher
compared to the impact of changing non-cloned code.

● Changes in code clones are more scattered compared
to the changes in non-cloned code.

Wilcoxon Signed Rank Tests for CCFinderX-Combined
results: From the Wilcoxon Signed Rank tests [3], [4] under
CCFinderX-Combined heading of Table XIX we see that the
test result is statistically significant for two metrics: AICM
(average instability of cloned methods), and CD (change
dispersion). However, as we noted before, AICM disregards
changes that occurred in fully non-cloned methods, and thus,
we can rely on it for making stability decision. If we now
consider the change dispersion metric, we see that the test
result is significant with a large effect size of 0.5764. Now, if
we look at the decision points under CCFinderX-Combined
category of Table XII, we realize that most of the decision
points (i.e., 10 points out of 12) belong to Category 2 (CLONE
LESS STABLE). Thus, according to our significance test
regarding change dispersion, cloned code can be significantly
more unstable than non-cloned code. In other words, the
changes in cloned code can be significantly more dispersed
than the changes in non-cloned code.

Contrasting our findings with those of the original

studies: Table XX shows the findings of the original studies
and our studies at a glance. We can see the eight candidate
metrics in this table. Most of the findings indicate higher
instability of code clones. From the table we realize that our
findings using NiCad clone detector are not contradictory to
our findings using CCFinderX. For six metrics (modification
probability, average last change date, impact, likelihood, av-
erage instability per cloned method, and change dispersion)
we get the same overall decisions from both clone detectors.
For the remaining two metrics (modification frequency, and
average age), the findings are not really contradictory in the
sense that none of the clone detectors suggest code clones to
be more unstable for each of these two metrics.

We now focus on the original findings. We see that for
three metrics (modification probability, average instability per
cloned method, and average age), our findings contradict
with the original findings. Let us first consider modification
probability. The original study performed by Göde and Harder
[19] was conducted on two Java systems only. Also, the
clone detection tool which was used in this study is different
from our tools. These might be the possible reasons behind
this contradiction. We have also replicated the original study
(described in Section VII-H) in the systematic way (by using
the subject systems, clone detection tool, and tool settings used
in the original study) and found that our implemented uniform
framework produces experimental results which are equivalent
to the results in the original study. With such a finding we
realize that the clone detection tool as well as the tool settings
play an important role in determining the comparative stability
scenario of cloned and non-cloned code.

Secondly, for calculating average instability per cloned
method, Lozano and Wermelinger [36] used only CCFinderX
for detecting clones and the experiment was performed on five
Java systems only. We performed our experiment using both
NiCad and CCFinderX on a different set of subject systems
covering three programming languages (Java, C, and C#). We
consider all three types of clones (Type 1, Type 2, and Type 3)
in our study. Lozano and Wermelinger [36] did not consider
Type 3 clones. These can be the possible reasons behind the
difference between the findings of our study and the original
study. From our systematic replication of the original study
(discussed in Section VII-H) we find that our replication study
does not agree with the original one. We discussed the reason
behind this disagreement in Section VII-H.

Thirdly, we discuss the contradiction regarding average age
metric. In the original study [41] Mondal et al. found that
code clones are generally more unstable than non-cloned code.
They considered only individual type results of NiCad in their
study. We see that our finding using the combined-type results
of NiCad is not necessarily contradictory to the finding of
Mondal et al. [41]. However, our finding regarding CCFinderX
contradicts with Mondal et al.’s [41] finding. The primary
reason behind this contradiction is the difference between the
clone detection results of NiCad and CCFinderX. Mondal et
al. [41] detected code clones using NiCad and investigated
each of the three type of clones (Type 1, Type 2, and Type 3)
separately. However, CCFinderX does not report clone results
by separating them by clone types. Also, it cannot detect Type
3 clones.

Finally, we can say that although there are a few contra-

0 20 40 60 80 100

T 1

T 2

T 3

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 35: Proportions of decision points for each clone type
considering 8 metrics.

dictions between our findings and the original findings, the
three columns of findings (original findings, our findings using
NiCad results, our findings using CCFinderx results) in Table
XX indicate that code clones generally have a higher tendency
of being more unstable than non-cloned code.

B. Type centric analysis

We perform type centric analysis on the individual type
results. The graph in Fig. 35 shows the comparative instability
of the three clone-types considering all three programming
languages and 8 metrics. In a particular decision table cor-
responding to a particular metric a particular clone type (Type
1, Type 2, or Type 3) contributes 12 decision points. So, 12
× 8 = 96 decision points are contributed by each clone type
in aggregate. The proportions of the decision points belonging
to Category 1, Category 2, and Category 3 for each type is
shown in this graph.

From Fig. 35 we see that most of the decision points
regarding Type 1 case (i.e., 53.125% of the decision points)
suggest higher instability of cloned code. A similar scenario
is also observed for Type 3 case. However, we observe an
opposite scenario for Type 2 case. The percentage of decision
points belonging to Category 1 (CLONE MORE STABLE)
for this case is higher compared to the percentage of decision
points in Category 2 (CLONE LESS STABLE). Thus, accord-
ing to the graph (i.e., Fig. 35), both Type 1 and Type 3 clones
appear to be more unstable than Type 2 clones during software
maintenance and evolution.

Fisher’s Exact Test: We wanted to determine whether the
stability scenario of Type 2 clones is significantly different
than that of Type 1 clones or Type 3 clones. For this purpose,
we perform Fisher’s Exact Test [18] considering the exact
count of decision points belonging to Category 1 (CLONE
MORE STABLE) and Category 2 (CLONE LESS STABLE)
for Type 1, Type 2, and Type 3 cases. We conducted our tests
considering a significance level of 5%. The test details are
shown in Table XXI. Each of the p-values is greater than 0.05,
and thus, we realize that the stability scenario of Type 2 clones
is not significantly different than the stability scenarios of Type
1 and Type 3 clones. From the graph (Fig. 35) we see that
each of the three types of clones can often be more unstable
than non-cloned code. Managing these three types of code
clones through tracking or refactoring can help us minimize
maintenance effort and cost of a software system.

TABLE XXI: Fisher’s Exact Tests for clone types

Type 1 Type 2 Type 2 Type 3
Category 1 39 47 47 36
Category 2 51 42 42 51

P = 0.2326 P = 0.1347

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3
0

20

40

60

80

100

Java C C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 36: Proportions of decision points for three clone types
of each language considering 8 metrics

According to the discussion, we suggest that programmers
should be careful while code cloning, specially, while creating
exact clones (Type 1 clones) and Type 3 clones. The possibility
that Type 1 or Type 3 clones will be more unstable than non-
cloned code is higher than the possibility that Type 2 clones
will be more unstable than non-cloned code (Fig. 35). Exact
clones can be easily avoided by refactoring which involves two
activities: (i) creation of a method containing the Type 1 clone
fragment and (ii) removal of all existences of Type 1 clone
fragments with proper method calls. But, such straight forward
refactoring is not possible for Type 3 clones because such
clones contain non-cloned fragments within clone fragments.
If we can avoid Type 1 clones from the very beginning of
software development by the refactoring activities mentioned
above, we can surely reduce the number of Type 3 as well as
Type 2 clones to a considerable extent, because Type 2 and
Type 3 clones can be created from Type 1 clones.

C. Type centric analysis for each programming language

The graph in Fig. 36 shows the proportions of the decision
points for each clone type and each programming language
considering eight metrics. When we consider eight metrics,
each clone type contributes 32 decision points (four for each
combination of clone-type and programming language) for a
particular language. The graph (Fig.36) shows the proportions
of the decision points (belonging to Category 1, Category 2,
and Category 3) of these 32 points for each clone type of a
language.

This graph conveys more specific information about the
instabilities of three clone types for different languages. Ac-
cording to this graph , each of the three clone types for C
exhibits higher instability compared to non-cloned code in
the maintenance phase. In case of Java, Type 1 and Type
3 clones show higher instability. However, each of the three
clone-types of C# appears to be more stable than non-cloned
code according to our studies.

TABLE XXII: Fisher’s Exact Tests by clone types for programming languages

Java C C#
T 1 T 2 T 1 T 3 T 2 T 3 T 1 T 2 T 1 T 3 T 2 T 3 T 1 T 2 T 1 T 3 T 2 T 3

Category 1 8 16 8 11 16 11 11 7 11 5 7 5 20 24 20 20 24 20
Category 2 23 13 23 17 13 17 17 22 17 25 22 25 11 7 11 9 7 9

P 0.0342 0.4031 0.2924 0.263 0.0786 0.5321 0.2813 0.7881 0.5634
T 1 = Type 1 T 2 = Type 2 T 3 = Type 3 P = P-value (or Probability value)

0 20 40 60 80 100

Java

C

C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 37: Proportions of decision points for each programming
language considering combined type results of 8 metrics

Fisher’s Exact Test: In order to find the validity of the
first null hypothesis (regarding RQ 9), we performed Fisher’s
exact tests [18] for each pair of three clone types (Type 1,
Type 2, and Type 3) for each programming language. The
test details for Java, C and C# are shown in Table XXII.
For the tests, we used the exact counts of the decision points
belonging to Category 1 and Category 2 corresponding to each
programming language and clone type.

According to the test results, there is a statistically sig-
nificant difference between Type 1 and Type 2 clones of Java
(p-value = 0.0342 <0.05). But, for other two languages, none
of the three clone type pairs shows a significant difference.

D. Language centric analysis

We perform language centric analysis considering both
combined type results and individual type results. The analysis
procedure and observations are described below.

1) Considering combined type results: The graph in Fig. 37
shows the proportions of the decision points of three categories
(Category 1, Category 2, Category 3) for each programming
language considering eight metrics. We see that each pro-
gramming language contributes 8 decision points for the com-
bined type cases (NiCad-Combined and CCFinderX-Combined
cases) in each table. So, if we consider the combined type
results of all the eight tables, a particular language contributes
8 × 8 = 64 decision points. This graph shows the proportions
of the decision points for each language considering these 64
points.

We see that in case of Java, while only 28.1% (18 decision
points) of the decision points belong to Category 1 (CLONES
MORE STABLE), 59.4% (38 points) fall in Category 2
(CLONES LESS STABLE). These proportions for C are 37.5%
(24 points) and 48.4% (31 points) respectively. However, an
opposite scenario is exhibited by C#. While 50% (32 points)
of the decision points of this language belong to Category 1,

0 20 40 60 80 100

Java

C

C#

% of decision points in Category 1 (CLONE MORE STABLE)
% of decision points in Category 2 (CLONE LESS STABLE)
% of decision points in Category 3 (NEUTRAL)

Fig. 38: Proportions of decision points for each programming
language considering individual type results of 8 metrics

only 39% (25 points) points belong to Category 2. According
to this graph, clones in Java and C are possibly more unstable
than the clones in C#.

2) Considering individual type results: We can see that
in each of the tables (corresponding to each of the eight
metrics) a particular programming language contributes 12
decision points under the headings, Type 1, Type 2 , and
Type 3. So, if we consider all of the eight metrics, the number
of decision points contributed by a particular programming
language is 96. We observe that in case of Java, while only
35 decision points belong to Category 1 (in favor of clones)
53 decision points belong to Category 2 (against clones). The
remaining 8 decision points are insignificant. For C, the counts
of points belonging to Category 1 and Category 2 are 23
and 64 respectively. The corresponding counts for C# are 64
and 27. We determined the proportions of the decision points
belonging to Category 1, 2, and 3 for each language and plotted
these in the graph of Fig. 38.

From the graph (Fig. 38) we again see that clones in both
Java and C languages exhibit higher instability compared to
the instability exhibited by the clones of C#.

Fisher’s Exact Test: We performed Fisher’s exact tests
separately for the combined type and individual type cases
to validate the null hypothesis 2 regarding the tenth research
question (RQ 10). Table XXIII contains the test details for
combined type case and Table XXIV contains the test details
for individual type case. Each of these tables contains the
details of the three tests corresponding to three language pairs.
Each test was conducted on the exact counts of the decision
points belonging to Category 1 and Category 2. The p-values
of the corresponding tests are shown along the last rows of
the tables. If the p-value of particular test is less than 0.05,
the difference between the observed data for that particular
test is significant.

We see that for the combined type case, the test result

TABLE XXIII: Fisher’s Exact Tests for prog. languages (Com-
bined type case)

Java C Java C# C C#
Category 1 18 24 18 32 24 32
Category 2 38 31 38 25 31 25

P = 0.2436 P = 0.0138 P = 0.2567

TABLE XXIV: Fisher’s Exact Tests for prog. languages (In-
dividual type case)

Java C Java C# C C#
Category 1 35 23 35 64 23 64
Category 2 53 64 53 27 64 27

P = 0.0773 P < 0.0001 P <0.0001

corresponding to the language pair: Java and C# is significant.
The p-value for this pair = 0.0138 (less than 0.05). For the
individual type case, the test results for two language pairs:
(1) Java and C# and, (2) C and C# are statistically significant
because the p-values for these two pairs are less than 0.05.

Thus, we can say that the instability exhibited by the clones
in C# is significantly lower (from our statistical significance
tests) than the instability of clones in both Java and C.

E. Clone detection tool centric analysis

This analysis is based on the combined type results. In
each of the eight tables, there are 12 decision points under
each of the two headings, NiCad-Combined and CCFinderX-
Combined, corresponding to two clone detection tools, NiCad
and CCFinderX. So, the total number of decision points
contributed by a particular tool in eight tables is 96 (= 12
x 8). Our tool centric analysis is based on 96 decision points
contributed by each tool.

According to the significant decision points belonging to
NiCad, 54.8% points (46 points) exhibit higher instability of
cloned code than non-cloned code. The remaining 45.2% (38
points) of the significant points contributed by this tool suggest
the opposite. These two percentages for CCFinderX are 57.1%
(48 points) and 42.9% (36 points) respectively. Thus, each
clone detection tool individually suggests higher instability of
cloned code compared to non-cloned code.

F. System centric analysis

In our system centric analysis we determined the agreement
and disagreement of the eight metrics obtained for a particular
system and a particular clone case (there are five clone cases
in total as indicated in Fig. 1). The agreement-disagreement
scenario has been presented in Table XXV. The construction
of the table is explained below.

For a particular subject system and a particular clone case

● if majority of the metrics agree with higher instability
of cloned code, the corresponding cell in the table is
marked with ‘⊖’.

● if majority of the metrics agree with higher instability
of non-cloned code (lower instability of cloned code),
the corresponding cell in the table is marked with ‘⊕’.

TABLE XXV: System centric analysis for five clone cases

Subject systems T 1 T 2 T 3 NiCad (C) CCFinderX (C)

DNSJava ⊖ ⊖ ⊖ ⊖ ⊖
Ant-Contrib ⊖ ⊕ ⊖ ⊖ ◯
Carol ◯ ⊖ ⊖ ⊖ ⊖
Jabref ◯ ⊕ ⊕ ⊕ ⊖
Ctags ⊖ ⊖ ⊖ ⊕ ◯
Camellia ⊕ ⊖ ⊖ ⊖ ⊖
QMailAdmin ⊖ ⊖ ⊖ ⊖ ⊖
GNUMakeUniproc ⊕ ⊖ ⊖ ⊕ ⊕
GreenShot ◯ ⊕ ⊖ ⊖ ⊕
ImgSeqScan ⊕ ⊕ ⊕ ⊕ ◯
CapitalResource ⊕ ⊕ ⊕ ⊕ ⊖
MonoOSC ◯ ⊕ ⊕ ⊕ ⊖
T1 = Type 1 case of NiCad T2 = Type 2 case of NiCad
T3 = Type 3 case of NiCad NiCad(C) = Combined case of NiCad
CCFinderX(C) = Combined case of CCFinderX
⊕ = For a particular subject system and clone case, majority of

metrics agree with higher stability of cloned code
⊖ = For a particular subject system and clone case, majority of

metrics agree with higher instability of cloned code
◯ = For a particular subject system and clone case,the same number

of metrics agree with both higher and lower stability of cloned code

● if the number of metrics agreeing with higher instabil-
ity of cloned code is equal to the number of metrics
with lower instability of cloned code, we marked the
corresponding cell with ‘◯’.

The Table XXV contains 60 cells where each cell corre-
sponds to a particular subject system and a particular clone
case. We have the following observations from this table.

● While 31 cells (51.7%) are marked with ‘⊖’, 22
(36.7%) cells contain ‘⊕’, and the remaining 7
(11.7%) cells contain ‘◯’. Thus, most of the cells
indicate higher instability of cloned code.

● We calculated the percentages of the cells contain-
ing the symbols ⊕ (CLONES MORE STABLE), ⊖
(CLONES LESS STABLE), and ◯ (NEUTRAL) for
each of the five clone cases and plotted these percent-
ages in the graph of Fig. 39. We see that for most
of the cells belonging to each of the two clone cases:
Type 3 (NiCad), and Combined (CCFinderX), majority
of the metrics agree with higher instability of cloned
code.

● We also calculated the percentages of the cells con-
taining ⊕, ⊖, and ◯ belonging to each of the three
programming languages and plotted these percentages
in the graph of Fig. 40. We see that for most of the cells
belonging to each of the two programming languages:
Java, and C, majority of the metrics agree with higher
instability of cloned code. Such a scenario is also
indicated by both Fig. 37 and Fig. 38. However, in
Fig. 40, most of the cells belonging to C# agree with
higher stability of cloned code.

G. Analysis related to the programming language paradigm

From the combined type results of Table XI we calculated
the average EPCMs (average extension of cloning per method)
for procedural programming language (C) and object-oriented
programming languages (Java and C#) considering both of the
two clone detection tools. The average EPCMs are 0.2898,

Type 1 Type 2 Type 3 NiCad (C) CCFinderX (C)
0

20

40

60

80

100

% of cells where majority of the metrics agree with higher
stability of clones (CLONE MORE STABLE)
% of cells where majority of the metrics agree with higher
instability of clones (CLONE LESS STABLE)
% of insignificant cells (NEUTRAL)

Fig. 39: System centric statistics regarding five clone cases.

0 20 40 60 80 100

Java

C

C#

% of cells where majority of the metrics agree with higher
stability of clones (CLONE MORE STABLE)
% of cells where majority of the metrics agree with higher
instability of clones (CLONE LESS STABLE)
% of insignificant cells (NEUTRAL)

Fig. 40: System centric statistics regarding three programming
languages

0.4112 and 0.5239 for C, Java and C# respectively. We observe
that average extension of cloning in C systems is much lower
compared to the other two programming languages (Java and
C#).

We also calculated the averages of CDcs (Dispersion of
Changes in Cloned Code) for the three programming languages
from the combined type results of Table XII. These averages
are 0.2541, 0.1652 and 0.1640 for C, Java and C# respectively.
In this case we see that the changes in the cloned code of C
programming language are more dispersed than the changes
in the cloned code of the other two programming languages.

From this we infer that the extension (or proportion) of
cloning in procedural programming language (c) is much
lower than that of object-oriented programming language
(Java and C#) however, the changes to the clones in procedural
language are more scattered compared to the changes to the
clones in object-oriented languages.

H. Analyzing the correlation of stability metrics

We wanted to analyze whether there is any correlation
among the metrics that we have investigated in our study.
Such an analysis can help us identify a compact set of metrics
that can be used to realize the stability scenario of the major
three clone-types (Type 1, Type 2, and Type 3). We consider
the combined-type clone results of NiCad and CCFinderX
in this investigation. We excluded the ALCD metric from
this investigation, because this metric only provides dates. As

we consider the age metric in our investigation, exclusion of
ALCD metric does not affect our analysis. Table XXVI shows
the analysis result. We used Spearman’s Rank Correlation [1],
[2] for our analysis. For this correlation, the samples do not
need to be normally distributed.

We determine correlation considering each pair of metrics.
Let us consider the metrics: MF (modification frequency),
and MP (modification probability). Considering the combined
type of results of NiCad we get the list of modification
frequencies of cloned code from Table V. We also get the
corresponding list of modification probabilities from Table VI.
We then determine whether these two lists of metric values are
correlated or not. We also determine correlation in the same
way considering CCFinderX clone results.

Correlation analysis on NiCad-Combined clone results.
In our analysis we consider only those cases where the
correlation between two metrics is significant. If we look at
the column NiCad-Combined of Table XXVI, we see that the
correlation is significant for five cases: (i) MF and CD, (ii) MP
and AA, (iii) MP and CD, (iv) AA and CD, and (v) Impact and
Likelihood. In each of these five cases, the p-value is less than
0.05. In all other cases, the correlation coefficient is low, and
also the correlation is insignificant according to the p-values
(p-values are greater than 0.05). We consider the five cases of
significant correlation in our analysis. We see that the metric
CD (change dispersion) is positively correlated with three
other metrics: MF (modification frequency), MP (modification
probability), and AA (average age). Thus, while understanding
the stability of cloned code, if one selects the CD (change
dispersion) metric, then he/she can possibly exclude MF, MP,
and AA from considerations. There is a positive correlation
between AA and MP. However, both of these metrics are
correlated with CD. Thus, if we consider CD, we do not need
to separately consider AA and MP for understanding clone
stability. We also see that impact and likelihood have a strong
positive correlation. However, these two are not correlated
with any other metrics. We also observe that AICM (average
instability per cloned method) is not correlated with any other
metrics. Finally, according to our analysis on the combined-
type clone results of NiCad, the metric set (CD, impact, and
AICM) or the set (CD, likelihood, and AICM) can help us
realize stability of cloned code.

Correlation analysis on CCFinderX-Combined clone
results. We analyzed metric correlations considering CCFind-
erX clone results in a way which is similar to our analysis
using NiCad combined clone results. From the column named
CCFinderX-Combined of Table XXVI we realize that the
metric likelihood has good correlations with AA (average age)
and impact. Change dispersion (CD) is positively correlated
with modification probability (MP). According to our analysis,
the metrics set (MF, CD, likelihood, and AICM) can help us
realize the stability of cloned code. However, CCFinderX does
not detect Type 3 clones. Thus, our correlation analysis on the
CCFinderX clone results only reflects the stability of Type 1
and Type 2 clones. As NiCad detects all three types of clones
(Type 1, 2, and 3), we can possibly rely on the correlation
analysis on NiCad results to understand the combined stability
of these three major clone-types.

TABLE XXVI: Spearman’s Rank Correlation among the met-
rics

NiCad-Combined CCFinderX-Combined
MF, MP r = 0.41958, p = 0.17452 r=0.25175, p=0.42992
MF, AA r = 0.39161, p = 0.20806 r=0.25874, p=0.41678
MF, Impact r = 0.48252, p = 0.11211 r=0.12587, p=0.69668
MF, Likelihood r = 0.34266, p = 0.27557 r = -0.40559, p = 0.19084
MF, AICM r = -0.18182, p = 0.5717 r = 0.00699, p = 0.98279
MF, CD r = 0.63636, p = 0.0261 r = 0.36364, p = 0.24527
MP, AA r = 0.66434, p = 0.01845 r = 0.08392, p = 0.79541
MP, Impact r = 0.32867, p = 0.2969 r = 0.16084, p = 0.61752
MP, Likelihood r = 0.47552, p = 0.11818 r = -0.02098, p = 0.9484
MP, AICM r = 0.0979, p = 0.76212 r = -0.23077, p = 0.47053
MP, CD r = 0.78322, p = 0.00259 r = 0.61538, p = 0.03317
AA, Impact r = 0.28671, p = 0.36625 r = -0.18182, p = 0.5717
AA, Likelihood r = 0.3007, p = 0.34226 r = -0.65035, p = 0.02203
AA, AICM r = -0.11189, p = 0.7292 r = -0.2028, p = 0.5273
AA, CD r = 0.58741, p = 0.04461 r = 0.26573, p = 0.40383
Impact, Likelihood r = 0.72727, p = 0.00735 r = 0.6014, p = 0.03859
Impact, AICM r = -0.21678, p = 0.49856 r = -0.54546, p = 0.06661
Impact, CD r = 0.11888, p = 0.71288 r = -0.08392, p = 0.79541
Likelihood, AICM r = -0.16783, p = 0.6021 r = -0.1049, p = 0.74561
Likelihood, CD r = 0.24476, p = 0.44326 r = -0.18881, p = 0.55674
AICM , CD r = 0.23776, p = 0.4568 r = -0.20979, p = 0.51284
MF = Modification Frequency MP = Modification Probability
ALCD = Average Last Change Date AA = Average Age
AICM = Average Instability per Cloned Method
CD = Change Dispersion p = Probability r = Correlation Coefficient

IX. DISCUSSION

A. Findings

We analyze the comparative stability of cloned and non-
cloned code in thousands of revisions of 12 diverse subject
systems considering eight stability measurement metrics. Ac-
cording to our analysis we have the following findings.

Finding 1: Cloned code is often more unstable than non-
cloned code during software evolution and maintenance. More
specifically:

● Cloned code has a higher tendency of getting changed
compared to non-cloned code (according to our analy-
sis regarding two stability metrics: modification prob-
ability, and likelihood).

● The impact of changing a cloned method (i.e., the
number of other methods that might need to be
changed as a consequence of changing a cloned
method) is generally higher than the impact of chang-
ing a non-cloned method (according to our analysis
on the impact metric).

● Changes in the clone regions of a software system are
generally more dispersed compared to the changes in
the non-clone regions (according to our analysis on
the change dispersion metric).

According to our statistical significance tests, changes
in cloned code can be significantly more dispersed than
the changes in non-cloned code. From such a scenario we
believe that code clones can considerably increase software

maintenance effort and cost during evolution. Thus, proper
management of code clones through refactoring and tracking
is necessary with tool support.

Finding 2: Although not statistically significant, Type 1
and Type 3 clones seem to exhibit higher instability than Type
2 clones. Minimizing the number of Type 1 clones through
refactoring can possibly help us minimize the number of both
Type 2 and Type 3 clones, because these two types of clones
can be created from Type 1 clones.

Finding 3: Instability of code clones in Java and C systems
is significantly higher (from our statistical significance tests)
compared to the instability of code clones in C# systems. Code
clones in C# systems are generally more stable than non-
cloned code in these systems. Thus, we should primarily focus
on managing code clones in the subject systems written in
Java and C. Possibly, we can exclude C# systems from our
considerations when taking clone management decisions.

Finding 4: The extension of cloning in procedural pro-
gramming languages seems considerably smaller than the ex-
tension of cloning in object-oriented programming languages.
However, changes to the code clones in procedural languages
are more dispersed compared to the changes to the code clones
in object oriented languages.

Finding 5: According to our correlation analysis, either
of the two sets: (Change Dispersion, Impact, and AICM)
or (Change Dispersion, Likelihood, and AICM) can help us
realize the stability of cloned code of a subject system.

B. Sensitivity analysis regarding the threshold of our calcu-
lated eligibility value

In our research we calculate an eligibility value for each
decision point where a decision point consists of a metric value
for cloned code, and the corresponding metric value for non-
cloned code. We also consider a threshold value of 10 such that
if the eligibility value for a decision point is greater than or
equal to this threshold, then we consider this decision point for
decision making purpose; otherwise, we ignore it. We should
mention that there is no empirically established threshold value
that we could use in our study context. In Section VII, we have
explained why we have selected a threshold value of 10 in our
study. We have also performed a sensitivity analysis (what-if
analysis) for the threshold value in the following way.

Sensitivity Analysis Process. We have eight tables (Table
V, VI, VII, VIII, IX, X, XI, XII) in the paper for eight stability
metrics. However, for analyzing the decision points in two
tables (Table VII and VIII) corresponding to the two metrics,
ALCD (Average Last Change Date) and AvgAge (Average
Age), we did not calculate an eligibility value by considering
the nature of data in these tables. A detailed explanation has
been provided in Section VII. As the decision points in Table
VII and Table VIII were treated in a different way (i.e., not
considering the threshold value) because of the nature of data
contained in these tables, we exclude these two tables from
our sensitivity analysis. We perform our analysis considering
all the decision points (360 points in total) in the remaining six
tables. For different values of threshold in the range 0 to 100,
we determine the overall stability scenario of cloned and non-
cloned code from these 360 decision points. For each threshold

Fig. 41: Sensitivity analysis regarding the threshold for our
calculated eligibility value

value, we first identify those decision points that meet the
threshold. Considering these decision points, we determine the
following two percentages:

● P1: The percentage of decision points where cloned
code appears to be more stable (i.e., non-cloned code
more unstable) with respect to all decision points that
meet the threshold.

● P2: The percentage of decision points where non-
cloned code appears to be more stable (i.e., cloned
code is more unstable) with respect to all decision
points that meet the threshold.

We plot these two percentages in Fig. 41 for all the
threshold values in the range 0 to 100. From the figure we
realize that the percentage of decision points where cloned
code is more unstable (P2) is always higher than the percentage
of decision points where cloned code is more stable (P1). We
also see that the two lines demonstrating the two percentages
are almost horizontal. It implies that the values of the two
percentages remained similar for all the thresholds. From the
graph we can decide that the comparative stability scenario of
cloned and non-cloned code is independent of the thresholds.
In other words, it appears that a threshold value does not
impact the stability scenario of cloned and non-cloned code.
Thus, our selected threshold of 10 does not affect the reliability
of our study findings.

X. THREATS TO VALIDITY

A. Threats to external validity

The number of subject systems investigated in our study
is not sufficient for taking strong decision about the com-
parative impacts of cloned and non-cloned code. Also, some
important factors such as type of developed software, expertise
of the responsible programmers, allocated development time
etc might have significant effects on cloning and stability
of cloned and non-cloned code. We did not consider these
factors in our study. However, our selection of subject systems
emphasizing on the diversity of application domains, system
sizes, implementation languages and the large number of
revisions have considerably minimized these drawbacks.

B. Threats to internal validity

For different settings of clone detection tools (NiCad and
CCFinderX), the number of detected clones will be different
and thus, the comparative stability scenarios of cloned and non-
cloned code can also be different. Wang et al. [61] defined
this issue as the confounding configuration choice problem
and conducted an extensive empirical investigation on it to
minimize its effects. However, the NiCad settings used in our
experiment are considered standard and with these settings
NiCad can detect clones with higher precision and recall [52]–
[54]. Also, the settings that we have used for CCFinderX are
considered equivalent to those of NiCad [39]. Thus, we believe
that our findings are important.

Our observation regarding the programming language
paradigm is based only on three programming languages.
The observation could be more precise with some other pro-
gramming languages from both procedural and object oriented
paradigms. However, as we considered many decision points
from both paradigms we expect that our observation cannot be
attributed to a chance.

C. Threats to construct validity

All of the metrics investigated in our study are only related
to stability (of cloned or non-cloned code). For determining
the impact of cloned code on maintenance we should also
investigate the relation of clones with bugs, faults and incon-
sistencies. However, according to our detailed explanation in
the introduction, by comparing the instability of cloned code
with that of non-cloned code we can determine whether cloned
or non-cloned code require higher maintenance effort and cost.

XI. RELATED WORK

We have emphasized clone stability in our research. How-
ever, stability is related with some other factors such as
harmfulness and longevity. Thus, our related work section not
only describes existing research on clone stability, but also
discusses the existing work on the harmfulness and longevity
of code clones.

A. Clone stability

Hotta et al. [24] studied the stability of clones on software
maintenance by determining the modification frequencies of
the duplicated and non-duplicated code segments of 15 subject
systems. According to their experimental result, the presence
of clones does not introduce extra difficulties to the mainte-
nance phase.

Krinke [31] measured how consistently the code clones are
changed during maintenance using Simian [59] (clone detector)
on Java, C and C++ code bases considering Type-I clones only.
He found that clone groups changed consistently through half
of their lifetime. In another experiment he showed that cloned
code is more stable than non-cloned code [32]. In his most
recent investigation [33] centered on calculating the average
ages of the cloned and non-cloned code, he has shown cloned
code to be more stable than non-cloned code by exploiting the
capabilities of version controlling system.

In a recent study [22] Harder and Göde replicated and
extended Krinke’s study [32] using an incremental clone

detection technique [20] to validate the outcome of Krinke’s
study. They supported Krinke by assessing cloned code to be
more stable than non-cloned code in general.

Mondal et al. [39] introduced a code stability measure
change dispersion and compared the change dispersions of
cloned and non-cloned code considering 16 subject systems.
According to their observation, changes in cloned code are
often more dispersed compared to the changes in non-cloned
code and thus, cloned code is expected to require higher
maintenance effort and cost than non-cloned code. In another
study Mondal et al. [40] investigated four code stability metrics
on 12 subject systems and found that cloned code is generally
less stable than non-cloned code.

Lozano and Wermelinger [37] experimented to assess
the effects of clones on the changeability of software using
CCFinderX [28] as the clone detector. According to their
study, cloned code can sometimes increase the instability of
software systems. In another experiment [35], they experienced
that cloned code leads to more changes. In their most recent
experiment [36] aiming to analyze the imprints of clones over
time, they found that cloning introduces higher density of
modifications during maintenance.

Kim et al. [30] proposed a model of clone genealogy to
study clone evolution. Their study with the revisions of two
medium sized Java systems showed that refactoring of clones
may not always improve software quality. Saha et al. [56]
extended their work by extracting and evaluating code clone
genealogies at the release level using 17 open source systems.
Their study reports similar findings as of Kim et al. and
concludes that most of the clones do not require any refactoring
efforts during maintenance. On the other hand, Juergens et
al.’s [27] study with large scale commercial systems suggests
that inconsistent changes are very frequent to the cloned code
and nearly every second unintentional inconsistent change to
a clone leads to a fault. Kapser and Godfrey [29] identified
different patterns of cloning and experienced that around 71%
of the clones could be considered to have a positive impact
on the maintainability of the software system. Aversano et al.
[8] combined clone detection and modification transactions on
open source software repositories to investigate how clones
are maintained during the evolution and bug fixing. Their study
reports that most of the cloned code is consistently maintained.
In another similar but extended study, Thummalapenta et al.
[60] indicated that most of the cases clones are changed
consistently and for the remaining inconsistently changed cases
clones mainly undergo independent evolution.

Chatterji et al. [15] performed a human-based empirical
study to resolve the contradiction among the claims regarding
the impacts of clones on software maintenance and evolution.
Their study includes three surveys each consisting of responses
from approximately 20 researchers from the clone research
community. From the surveys, the authors feel the necessity of
more focused and human-oriented investigations for resolving
the contradictions regarding the effects of clones on software
maintenance.

We see that while the objective is the same—determining
the impacts of clones on software maintenance, the researchers
considered different approaches with different clone detection
tools and subject systems, and finally reported contradictory

findings. Our empirical study described in this paper is an at-
tempt to resolve the contradiction using a uniform framework.

B. Harmfulness of code clones

Rahman et al. [46] investigated the bug-proneness of cloned
and non-cloned code considering four subject systems and
found non-cloned code to be more bug-prone than clone
code. They investigated only monthly snapshots (i.e., revisions)
of the subject systems. Thus, their analysis might exclude
some buggy commits from considerations. Selim et al. [58]
investigated the fault-proneness of code clones using Cox
hazard models. According to their investigation on two subject
systems, fault-proneness of code clones might be system
dependent.

Wang et al. [62] proposed a Bayesian Networks based
machine learning technique to realize the harmfulness of code
cloning operations (such as copy/paste activities). They applied
their technique on two large scale industrial software systems
and found that they could block a considerable proportion of
the copy/paste activities that may lead to harmful clones.

Late propagation [43], [45] is a harmful clone evolution
pattern. Barbour et al. [10], [11] investigated late propagation
and its relatedness with bug-proneness. They introduced eight
late propagation patterns and identified the most bug-prone
ones. Barbour et al. [10], [11] only considered Type 1 and
Type 2 clones in their study. In another study, Mondal et
al. [43] investigated the bug-proneness of late propagation
considering all three major types of clones: Type 1, Type 2,
and Type 3. Existing studies [25], [44] have also investigated
bug-replication tendencies and bug densities in three types of
code clones.

C. Longevity of code clones

Cai and Kim [13] investigated the characteristics of long
lived clones. According to their considerations all the code
clones in a software system should not be refactored ag-
gressively. Some clones never change during evolution and
also, some clones are volatile. Such clones should not be
considered for refactoring. According to their investigation,
static or spatial characteristics of clones should not be consid-
ered when taking clone refactoring decisions. The evolutionary
characteristics of clones should be emphasized to identify the
important ones for refactoring.

In the previous subsections, we have discussed the existing
studies that are directly or indirectly related to clone stability.
We have seen that clone stability has been measured in dif-
ferent studies in different ways considering different stability
aspects using different experimental settings. In our empirical
study, we develop a uniform framework to evaluate all the
stability metrics on the same set of subject systems with the
same experimental setting. We also evaluated the metrics with
the original experimental settings. Through our experimental
results, we focus on resolving the contradiction among the
existing clone stability studies and determine whether cloned
code is more stable than non-cloned code or not. Our study
results in interesting findings regarding clone stability.

XII. CONCLUSION AND FUTURE WORK

In this empirical study, we implemented seven method-
ologies and calculated eight stability related metrics using a
common framework. We implemented each of these method-
ologies using two clone detection tools: NiCad and CCFinderX
and applied on each of the twelve subject systems written in
three programming languages (Java, C, and C#). According to
our analysis of the experimental results, cloned code appears
to be more unstable than non-cloned code in general. Each
of the clone detection tools individually suggests cloned code
to be more unstable. This scenario disagrees with the already
established bias [24], [33] and indicates that clones are not nec-
essarily stable, and most of the time more unstable than non-
cloned code in the maintenance phase. Thus, clones should
be managed with proper tool support. However, although we
found cloned code to be generally more unstable than non-
cloned code, our statistical significance test results imply that
the difference between the instability of cloned and non-cloned
code is not statistically significant for most (seven out of
eight) of the stability metrics. Only for the stability metric
change dispersion, cloned code was found to be significantly
more unstable than non-cloned code. In other words, changes
occurring in cloned code are significantly more dispersed (i.e.,
affecting more program entities) than the changes in non-
cloned code. Thus, making changes to a cloned fragment might
be riskier than making changes to a non-cloned fragment.

We have systematically replicated (i.e., replicated using
their subject systems, clone detection tools, and tool settings)
the original studies using our uniform framework. We find that
the experimental results produced by our replicated experi-
ments are mostly equivalent to the experimental results of the
original studies.

According to our type-centric analysis, Type 1 and Type 3
clones are more unstable compared to the Type 2 clones. Our
Fisher’s exact test results suggest that Type 1 clones of Java
systems are significantly more unstable than Type 2 clones.
Possibly, we should give more emphasis on managing Type 1
and Type 3 clones.

Our language centric analysis suggests that clones in Java
and C programming languages are more unstable than the
clones in C#. Our Fisher’s exact test results regarding pro-
gramming languages imply that code clones in Java and C
systems are significantly more unstable compared to the code
clones in C# systems. We find that code clones in C# systems
mostly exhibit higher stability than non-cloned code in these
systems. Thus, when taking clone refactoring decisions we
should primarily focus on Java and C systems excluding C#
systems from our considerations.

According to our correlation analysis on the eight stability
metrics we find that either of the two sets: (Change Dispersion,
Impact, and AICM) and (Change Dispersion, Likelihood, and
AICM) can be used for realizing the stability scenario of the
code clones of a subject system.

Finally, according to our result it seems that object-oriented
programming languages promote more cloning than procedural
programming languages. However, changes to the clones in
procedural programming language appear to be more scattered
(i.e., exhibit higher dispersion) compared to the changes to the
clones in object-oriented languages. Thus, it is expected that

the clones in object-oriented languages generally require less
effort to be maintained compared to the clones in procedural
programming languages because, higher change dispersion is
a possible indicator of higher maintenance effort and cost [42].

We conclude by saying that our findings are important for
taking decisions regarding cloning, clone refactoring, and clone
tracking and thus, can help us in better clone maintenance.
As we found Type 1 and Type 3 clones to be more unstable
than Type 2 clones, Type 1 and Type 3 clones should be
given a higher priority when taking clone refactoring and
tracking decisions. Although, our study yields important find-
ings regarding the comparative stability of cloned and non-
cloned code, this study does not focus on the identification
of the influencing factors contributing to the instability of
cloned and non-cloned code. Identification of the factors that
influence the instability of code might be an important area to
further investigate. Future research should also be conducted
to explore if or to what extent instability of code contributes
to other issues in software maintenance such as bugs. Our
evaluation data and the framework are now available on-line
[7].

REFERENCES

[1] Spearman’s Rank Correlation: https://en.wikipedia.org/wiki/Spearman%
27s rank correlation coefficient

[2] Spearman’s correlation online calculator: http://www.socscistatistics.
com/tests/spearman/default2.aspx

[3] Wilcoxon Signed Rank Test: https://en.wikipedia.org/wiki/Wilcoxon
signed-rank test

[4] Wilcoxon Signed Rank Test On-line Calculator: http://www.
socscistatistics.com/tests/signedranks/Default2.aspx

[5] Effect Size for Wilcoxon Signed Rank Test: http://stats.stackexchange.
com/questions/133077/effect-size-to-wilcoxon-signed-rank-test

[6] Effect Size: https://en.wikipedia.org/wiki/Effect size
[7] Evaluation Data and Framework: goo.gl/1GjeZM
[8] L. Aversano, L. Cerulo, M. D. Penta,“How clones are maintained: An

empirical study”, Proc. CSMR, 2007, pp. 81–90.
[9] T. Bakota, R. Ferenc, T. Gyimothy, “Clone Smells in Software Evolu-

tion”, Proc. ICSM, 2007, pp.24 - 33
[10] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”,

Proc. ICSM, 2011, pp. 273-282
[11] L. Barbour, F. Khomh, Y. Zou, “An empirical study of faults in late

propagation clone genealogies”, Journal of Software: Evolution and
Process, 2013, 25(11):1139 – 1165.

[12] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A.
Hassan, “An empirical study on inconsistent changes to code clones at
release level”, Proc. WCRE, 2009, pp. 85 – 94.

[13] D. Cai, M. Kim, “An empirical study of long-lived code clones”, Proc.
FASE/ETAPS, 2011, pp. 432 – 446.

[14] CCFinderX. http://www.ccfinder.net/ccfinderxos.html
[15] D. Chatterji, J. C. Carver , N. A. Kraft, “Code clones and developer

behavior: results of two surveys of the clone research community”,
Empirical Software Engineering, 2016, 21(4):1476 – 1508.

[16] J. R. Cordy, and C. K. Roy, “The NiCad Clone Detector”, Proc. ICPC
(Tool Demo Track), 2011, pp. 219 – 220.

[17] Exuberant Ctags: http://ctags.sourceforge.net/
[18] Fisher Exact Test: http://in-silico.net/tools/statistics/fisher exact test
[19] N. Göde, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65-74.
[20] N. Göde, R. Koschke, “Studying clone evolution using incremental

clone detection”, JSME, 2010, 25(2): 165 – 192.
[21] N. Göde, R. Koschke, “Frequency and risks of changes to clones”,

Proc.ICSE, 2011, pp.311–320.

[22] J. Harder, N. Göde, “Cloned code: stable code”, J. Softw. Evol. Process,
25(10)(2013) 1063 – 1088.

[23] W Hordijk, M Ponisio, R Wieringa, “Harmfulness of Code Duplication
- A Structured Review of the Evidence”, Proc. EASE, 2009, pp. 88 – 97.

[24] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More
Frequently Modified than Non-duplicate Code in Software Evolution?:
An Empirical Study on Open Source Software,” Proc. EVOL/IWPSE,
2010, pp. 73–82.

[25] J. F. Islam, M. Mondal, C. K. Roy, “Bug Replication in Code Clones:
An Empirical Study”, Proc. SANER, 2016, pp. 68 – 78.

[26] S Jarzabek , Y Xu, “Are clones harmful for maintenance?”, Proc. IWSC,
2010, pp. 73-74.

[27] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones
Matter?,” Proc. ICSE, 2009, pp. 485– 495.

[28] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
TSE, 2002, 28(7): 654–670.

[29] C. Kapser and M. W. Godfrey, ““Cloning considered harmful” con-
sidered harmful: patterns of cloning in software,” ESE, 2008, 13(6):
645–692.

[30] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical
study of code clone genealogies,” Proc. ESEC-FSE, 2005, pp. 187–196.

[31] J. Krinke, “A study of consistent and inconsistent changes to code
clones,” Proc. WCRE, 2007, pp. 170–178.

[32] J. Krinke, “Is cloned code more stable than non-cloned code?,” Proc.
SCAM, 2008, pp. 57–66.

[33] J. Krinke, “Is Cloned Code older than Non-Cloned Code?,” Proc. IWSC,
2011, pp. 28 – 33.

[34] J. Li, M. D. Ernst, “CBCD: Cloned Buggy Code Detector”, Univer-
sity of Washington Department of Computer Science and Engineering
technical report UW-CSE-11-05-02, (Seattle, WA, USA), May 2, 2011.
Revised October 2011.

[35] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Evaluating the
Harmfulness of Cloning: A Change Based Experiment,” Proc. MSR,
2007, pp. 18.

[36] A. Lozano and M. Wermelinger, “Tracking clones’ imprint,” Proc.
IWSC, 2010, pp. 65–72.

[37] A. Lozano, and M. Wermelinger, “Assessing the effect of clones on
changeability,” Proc. ICSM, 2008, pp. 227–236.

[38] M. Mondal, M. S. Rahman, R. K. Saha, C. K. Roy, J. Krinke, K. A.
Schneider, “An Empirical Study of the Impacts of Clones in Software
Maintenance”, Proc. ICPC Student Research Symposium Track, 2011,
pp. 242 – 245.

[39] M. Mondal, C. K. Roy, and K. Schneider, “An Insight into the
Dispersion of Changes in Cloned and Non-cloned Code: A Genealogy
Based Empirical Study”, SCP, 2014, 95(4):445 – 468.

[40] M. Mondal, C. K. Roy, and K. A. Schneider, “An Empirical Study on
Clone Stability”, ACR, 12(3): 20–36.

[41] M. Mondal, C. K. Roy, S. Rahman, R. K. Saha, J. Krinke, K. A.
Schneider, “Comparative Stability of Cloned and Non-cloned Code: An
Empirical Study”, Proc. SAC, 2012, pp. 1227 – 1234.

[42] M. Mondal, C. K. Roy, K. A. Schneider, “Dispersion of Changes in
Cloned and Non-cloned Code”, Proc. IWSC, 2012, pp. 29 – 35.

[43] M. Mondal, C. K. Roy, K. A. Schneider, “A comparative study on the
intensity and harmfulness of late propagation in near-miss code clone”,
Software Quality Journal, 2016, 24(4): 883 – 915.

[44] M. Mondal, C. K. Roy, K. A. Schneider, “A Comparative Study on the
Bug-Proneness of Different Types of Code Clones”, Proc. ICSME, 2015,
pp. 91 – 100.

[45] M. Mondal, C. K. Roy, K. A. Schneider, “Late Propagation in Near-
Miss Clones: An Empirical Study”, ECEASST, 63(2014): 1- 17.

[46] F. Rahman, C. Bird, P. Devanbu, “Clones: What is that Smell?”, Proc.
MSR, 2010, pp. 72 - 81.

[47] M. S. Rahman, C. K. Roy, “A Change-Type Based Empirical Study on
the Stability of Cloned Code”, Proc. SCAM, 2014, pp. 31 – 40.

[48] M. S. Rahman, A. Aryani, C. K. Roy, F. Perin, “On the Relationships
between Domain-Based Coupling and Code Clones: An Exploratory
Study”, Proc. ICSE NIER Track, 2013, pp. 1265 – 1268.

[49] C. K. Roy, M. F. Zibran, R. Koschke, “The Vision of Software
Clone Management: Past, Present and Future”, Proc. CSMR-18/WCRE-
21 Software Evolution Week 2014, 16 pp.

[50] C.K. Roy and J.R. Cordy, “NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normaliza-
tion,” Proc ICPC, 2008, pp. 172–181.

[51] C. K. Roy and J. R. Cordy, “A mutation / injection-based automatic
framework for evaluating code clone detection tools,” Proc. Mutation,
2009, pp. 157–166.

[52] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”,
SCP, 2009, 74(2009): 470 – 495.

[53] C.K. Roy, and J. R. Cordy, “An Empirical Evaluation of Function Clones
in Open Source Software”, Proc. WCRE, 2008, pp. 81 – 90.

[54] C. K. Roy, and J. R. Cordy, “Scenario-based Comparison of Clone
Detection Techniques”, Proc. ICPC, 2008, pp.153 – 162.

[55] R. K. Saha, C. K. Roy, and K. A. Schneider, “An Automatic Framework
for Extracting and Classifying Near-Miss Clone Genealogies”, Proc.
ICSM, 2011, pp. 293 – 302.

[56] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy, and K. A.
Schneider, “Evaluating code clone genealogies at release level: An
empirical study,” Proc. SCAM, 2010, pp. 87–96.

[57] Scorpio. http://www-sdl.ist.osaka-u.ac.jp/∼higo/cgi-bin/moin.cgi/
scorpio-e/.

[58] G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, Y.
Zou, “Studying the Impact of Clones on Software Defects”, Proc. WCRE,
2010, pp.13 – 21.

[59] Simian-similarity analyser. http://www.redhillconsulting.com.au/
products/simian/

[60] S. Thummalapenta, L. Cerulo, L. Aversano, and M. D. Penta, “An
empirical study on the maintenance of source code clones,” ESE, 2009,
15(1):1–34.

[61] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better Configura-
tions: A Rigorous Approach to Clone Evaluation”, Proc. ESEC/SIGSOFT
FSE, 2013, pp. 455–465.

[62] X. Wang , Y. Dang , L. Zhang , D. Zhang , E. Lan , H. Mei, “Can I
clone this piece of code here?”, Proc. ASE, 2012, pp. 170 – 179.

[63] N. Göde and R. Koschke., “Incremental clone detection”, Proc.CSMR,
2009, pp. 219–228.

[64] Y. Higo and S. Kusumoto., “Significant and Scalable Code Clone
Detection with Program Dependency Graph.”, Proc. WCRE, 2009, pp.
315–316.

